Overview

Brought to you by YData

Dataset statistics

Number of variables85
Number of observations34
Missing cells1732
Missing cells (%)59.9%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory22.6 KiB
Average record size in memory680.0 B

Variable types

Text13
Unsupported1
Numeric17
Categorical54

Alerts

Country_Gibraltar has constant value "1.0" Constant
Country_Sierra Leone has constant value "2.0" Constant
Country_Botswana has constant value "3.0" Constant
Country_Zimbabwe has constant value "1.0" Constant
Country_Portugal has constant value "1.0" Constant
Country_Cape Verde has constant value "2.0" Constant
Country_Saint Helena, Ascension and Tristan da Cunha has constant value "1.0" Constant
Country_India has constant value "2.0" Constant
Country_Somalia has constant value "1.0" Constant
Country_Guinea-Bissau has constant value "1.0" Constant
Country_Malawi has constant value "6.0" Constant
Country_Ghana has constant value "1.0" Constant
Country_Liberia has constant value "1.0" Constant
Country_The Gambia has constant value "1.0" Constant
Country_Ethiopia has constant value "9.0" Constant
Country_Malta has constant value "6.0" Constant
Country_Gabon has constant value "1.0" Constant
Country_Germany has constant value "1.0" Constant
Country_Angola has constant value "2.0" Constant
Country_Namibia has constant value "1.0" Constant
Country_Sahrawi Arab Democratic Republic has constant value "4.0" Constant
Country_Sweden has constant value "1.0" Constant
Country_Ukraine has constant value "1.0" Constant
Country_Russia has constant value "1.0" Constant
Arrival Age is highly overall correlated with Country_Côte d'Ivoire and 18 other fieldsHigh correlation
Country_Algeria is highly overall correlated with Country_France and 8 other fieldsHigh correlation
Country_Côte d'Ivoire is highly overall correlated with Arrival Age and 13 other fieldsHigh correlation
Country_Democratic Republic of the Congo is highly overall correlated with Arrival Age and 13 other fieldsHigh correlation
Country_Egypt is highly overall correlated with Country_Libya and 17 other fieldsHigh correlation
Country_France is highly overall correlated with Arrival Age and 15 other fieldsHigh correlation
Country_Guinea is highly overall correlated with Country_Morocco and 16 other fieldsHigh correlation
Country_Kenya is highly overall correlated with Arrival Age and 13 other fieldsHigh correlation
Country_Libya is highly overall correlated with Country_Algeria and 13 other fieldsHigh correlation
Country_Mali is highly overall correlated with Arrival Age and 21 other fieldsHigh correlation
Country_Mauritania is highly overall correlated with Arrival Age and 14 other fieldsHigh correlation
Country_Morocco is highly overall correlated with Country_Guinea and 5 other fieldsHigh correlation
Country_Mozambique is highly overall correlated with Arrival Age and 7 other fieldsHigh correlation
Country_Niger is highly overall correlated with Arrival Age and 15 other fieldsHigh correlation
Country_Nigeria is highly overall correlated with Country_Niger and 8 other fieldsHigh correlation
Country_Senegal is highly overall correlated with Arrival Age and 16 other fieldsHigh correlation
Country_South Africa is highly overall correlated with Arrival Age and 11 other fieldsHigh correlation
Country_Spain is highly overall correlated with Country_Mozambique and 9 other fieldsHigh correlation
Country_Tanzania is highly overall correlated with Country_Egypt and 8 other fieldsHigh correlation
Country_Tunisia is highly overall correlated with Arrival Age and 16 other fieldsHigh correlation
Country_United Kingdom is highly overall correlated with Arrival Age and 10 other fieldsHigh correlation
Country_Zambia is highly overall correlated with Arrival Age and 17 other fieldsHigh correlation
Departure Age is highly overall correlated with Arrival Age and 17 other fieldsHigh correlation
Difficulty_Climate is highly overall correlated with Country_Guinea and 7 other fieldsHigh correlation
Difficulty_Fatigue/Illness is highly overall correlated with Arrival Age and 15 other fieldsHigh correlation
Difficulty_Humans is highly overall correlated with Arrival Age and 18 other fieldsHigh correlation
Difficulty_Nature is highly overall correlated with Arrival Age and 15 other fieldsHigh correlation
Difficulty_Thirst/Hunger is highly overall correlated with Arrival Age and 19 other fieldsHigh correlation
Difficulty_Transport is highly overall correlated with Country_Guinea and 8 other fieldsHigh correlation
Hierarchical_Cluster is highly overall correlated with Country_Côte d'Ivoire and 21 other fieldsHigh correlation
KMeans_Cluster is highly overall correlated with Country_Algeria and 21 other fieldsHigh correlation
Language is highly overall correlated with Country_Côte d'Ivoire and 17 other fieldsHigh correlation
Money is highly overall correlated with Country_Côte d'Ivoire and 20 other fieldsHigh correlation
Nationality is highly overall correlated with Country_Côte d'Ivoire and 17 other fieldsHigh correlation
Number of images is highly overall correlated with Country_Côte d'Ivoire and 16 other fieldsHigh correlation
Number of steps is highly overall correlated with Country_Côte d'Ivoire and 16 other fieldsHigh correlation
Start Year is highly overall correlated with Country_Côte d'Ivoire and 16 other fieldsHigh correlation
Steps with null coordinates in % is highly overall correlated with Country_Algeria and 17 other fieldsHigh correlation
Total distance traveled (km) is highly overall correlated with Country_Côte d'Ivoire and 19 other fieldsHigh correlation
Transport_Boat is highly overall correlated with Country_Côte d'Ivoire and 14 other fieldsHigh correlation
Transport_Camelid is highly overall correlated with Country_Guinea and 16 other fieldsHigh correlation
Transport_Caravan is highly overall correlated with Country_Algeria and 9 other fieldsHigh correlation
Transport_Equid is highly overall correlated with Country_Algeria and 12 other fieldsHigh correlation
Transport_Slow ground vehicle is highly overall correlated with Country_Guinea and 8 other fieldsHigh correlation
Transport_Train is highly overall correlated with Country_Egypt and 8 other fieldsHigh correlation
Transport_Walking is highly overall correlated with Country_Egypt and 15 other fieldsHigh correlation
Travel duration in days is highly overall correlated with Arrival Age and 19 other fieldsHigh correlation
Transport_Train has 25 (73.5%) missing values Missing
Transport_Equid has 22 (64.7%) missing values Missing
Country_France has 32 (94.1%) missing values Missing
Country_Algeria has 24 (70.6%) missing values Missing
Transport_Slow ground vehicle has 25 (73.5%) missing values Missing
Transport_Boat has 10 (29.4%) missing values Missing
Difficulty_Climate has 28 (82.4%) missing values Missing
Difficulty_Transport has 29 (85.3%) missing values Missing
Difficulty_Nature has 28 (82.4%) missing values Missing
Country_Tunisia has 31 (91.2%) missing values Missing
Country_Morocco has 27 (79.4%) missing values Missing
Country_Libya has 27 (79.4%) missing values Missing
Transport_Caravan has 25 (73.5%) missing values Missing
Transport_Camelid has 22 (64.7%) missing values Missing
Country_United Kingdom has 28 (82.4%) missing values Missing
Country_Nigeria has 29 (85.3%) missing values Missing
Country_Niger has 31 (91.2%) missing values Missing
Difficulty_Humans has 30 (88.2%) missing values Missing
Country_Spain has 29 (85.3%) missing values Missing
Country_Gibraltar has 31 (91.2%) missing values Missing
Transport_Walking has 20 (58.8%) missing values Missing
Difficulty_Fatigue/Illness has 30 (88.2%) missing values Missing
Difficulty_Thirst/Hunger has 29 (85.3%) missing values Missing
Country_Sierra Leone has 33 (97.1%) missing values Missing
Country_Guinea has 29 (85.3%) missing values Missing
Country_Mali has 29 (85.3%) missing values Missing
Country_Côte d'Ivoire has 32 (94.1%) missing values Missing
Country_Senegal has 31 (91.2%) missing values Missing
Country_Egypt has 30 (88.2%) missing values Missing
Country_Kenya has 32 (94.1%) missing values Missing
Country_Tanzania has 28 (82.4%) missing values Missing
Country_Mozambique has 27 (79.4%) missing values Missing
Country_Democratic Republic of the Congo has 32 (94.1%) missing values Missing
Country_Zambia has 32 (94.1%) missing values Missing
Country_Botswana has 33 (97.1%) missing values Missing
Country_South Africa has 30 (88.2%) missing values Missing
Country_Zimbabwe has 32 (94.1%) missing values Missing
Country_Portugal has 31 (91.2%) missing values Missing
Country_Cape Verde has 33 (97.1%) missing values Missing
Country_Saint Helena, Ascension and Tristan da Cunha has 33 (97.1%) missing values Missing
Country_India has 33 (97.1%) missing values Missing
Country_Somalia has 33 (97.1%) missing values Missing
Country_Guinea-Bissau has 33 (97.1%) missing values Missing
Country_Malawi has 33 (97.1%) missing values Missing
Country_Mauritania has 32 (94.1%) missing values Missing
Country_Ghana has 33 (97.1%) missing values Missing
Country_Liberia has 33 (97.1%) missing values Missing
Country_The Gambia has 33 (97.1%) missing values Missing
Country_Ethiopia has 33 (97.1%) missing values Missing
Country_Malta has 33 (97.1%) missing values Missing
Country_Gabon has 33 (97.1%) missing values Missing
Country_Germany has 33 (97.1%) missing values Missing
Country_Angola has 33 (97.1%) missing values Missing
Country_Namibia has 33 (97.1%) missing values Missing
Country_Sahrawi Arab Democratic Republic has 33 (97.1%) missing values Missing
Country_Sweden has 33 (97.1%) missing values Missing
Country_Ukraine has 33 (97.1%) missing values Missing
Country_Russia has 33 (97.1%) missing values Missing
Country_France is uniformly distributed Uniform
Country_Tunisia is uniformly distributed Uniform
Country_Niger is uniformly distributed Uniform
Country_Côte d'Ivoire is uniformly distributed Uniform
Country_Senegal is uniformly distributed Uniform
Country_Kenya is uniformly distributed Uniform
Country_Democratic Republic of the Congo is uniformly distributed Uniform
Country_Zambia is uniformly distributed Uniform
Country_Mauritania is uniformly distributed Uniform
Title has unique values Unique
URL has unique values Unique
Goal has unique values Unique
Total distance traveled (km) has unique values Unique
Year of the Journey is an unsupported type, check if it needs cleaning or further analysis Unsupported
Departure Age has 10 (29.4%) zeros Zeros
Arrival Age has 14 (41.2%) zeros Zeros
Travel duration in days has 14 (41.2%) zeros Zeros
Number of images has 10 (29.4%) zeros Zeros
Steps with null coordinates in % has 3 (8.8%) zeros Zeros
Total distance traveled (km) has 1 (2.9%) zeros Zeros

Reproduction

Analysis started2025-03-20 12:59:29.594953
Analysis finished2025-03-20 13:00:36.541195
Duration1 minute and 6.95 seconds
Software versionydata-profiling vv4.15.0
Download configurationconfig.json

Variables

Title
Text

Unique 

Distinct34
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:37.524031image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length228
Median length61.5
Mean length58.823529
Min length6

Characters and Unicode

Total characters2000
Distinct characters74
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique34 ?
Unique (%)100.0%

Sample

1st rowA Journal of the First Voyage of Vasco da Gama 1497-1499
2nd rowA Popular Account of Dr. Livingstone's Expedition to the Zambesi and Its Tributaries
3rd rowA biographical memoir of the late Dr. Walter Oudney, Captain Hugh Clapperton, both of the Royal Navy, and Major Alex. Gordon Laing, all of whom died amid their active and enterprising endeavours to explore the interior of Africa
4th rowAfrikanska reseminnen, Äfventyr och Intryck från En utflykt till de Svartes Världsdel
5th rowAu Hoggar
ValueCountFrequency (%)
the 24
 
6.9%
of 21
 
6.1%
in 14
 
4.0%
and 14
 
4.0%
africa 13
 
3.8%
to 12
 
3.5%
sahara 9
 
2.6%
au 8
 
2.3%
central 6
 
1.7%
travels 5
 
1.4%
Other values (156) 220
63.6%
2025-03-20T14:00:38.909768image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
312
15.6%
a 160
 
8.0%
e 146
 
7.3%
r 134
 
6.7%
o 132
 
6.6%
t 106
 
5.3%
i 96
 
4.8%
n 94
 
4.7%
s 72
 
3.6%
h 58
 
2.9%
Other values (64) 690
34.5%

Most occurring categories

ValueCountFrequency (%)
(unknown) 2000
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
312
15.6%
a 160
 
8.0%
e 146
 
7.3%
r 134
 
6.7%
o 132
 
6.6%
t 106
 
5.3%
i 96
 
4.8%
n 94
 
4.7%
s 72
 
3.6%
h 58
 
2.9%
Other values (64) 690
34.5%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 2000
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
312
15.6%
a 160
 
8.0%
e 146
 
7.3%
r 134
 
6.7%
o 132
 
6.6%
t 106
 
5.3%
i 96
 
4.8%
n 94
 
4.7%
s 72
 
3.6%
h 58
 
2.9%
Other values (64) 690
34.5%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 2000
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
312
15.6%
a 160
 
8.0%
e 146
 
7.3%
r 134
 
6.7%
o 132
 
6.6%
t 106
 
5.3%
i 96
 
4.8%
n 94
 
4.7%
s 72
 
3.6%
h 58
 
2.9%
Other values (64) 690
34.5%

Year of the Journey
Unsupported

Rejected  Unsupported 

Missing0
Missing (%)0.0%
Memory size544.0 B

Start Year
Real number (ℝ)

High correlation 

Distinct29
Distinct (%)85.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1863.8529
Minimum1497
Maximum1922
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:00:39.203896image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1497
5-th percentile1809.45
Q11849.25
median1874
Q31909.25
95-th percentile1921.35
Maximum1922
Range425
Interquartile range (IQR)60

Descriptive statistics

Standard deviation73.534215
Coefficient of variation (CV)0.039452799
Kurtosis19.371902
Mean1863.8529
Median Absolute Deviation (MAD)27
Skewness-3.9356189
Sum63371
Variance5407.2807
MonotonicityNot monotonic
2025-03-20T14:00:39.488583image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=29)
ValueCountFrequency (%)
1915 2
 
5.9%
1824 2
 
5.9%
1922 2
 
5.9%
1910 2
 
5.9%
1849 2
 
5.9%
1497 1
 
2.9%
1853 1
 
2.9%
1845 1
 
2.9%
1879 1
 
2.9%
1880 1
 
2.9%
Other values (19) 19
55.9%
ValueCountFrequency (%)
1497 1
2.9%
1788 1
2.9%
1821 1
2.9%
1824 2
5.9%
1827 1
2.9%
1845 1
2.9%
1849 2
5.9%
1850 1
2.9%
1853 1
2.9%
1856 1
2.9%
ValueCountFrequency (%)
1922 2
5.9%
1921 1
2.9%
1915 2
5.9%
1914 1
2.9%
1912 1
2.9%
1910 2
5.9%
1907 1
2.9%
1898 1
2.9%
1893 1
2.9%
1890 1
2.9%

Author
Text

Distinct25
Distinct (%)73.5%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:40.195989image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length71
Median length23.5
Mean length19.735294
Min length10

Characters and Unicode

Total characters671
Distinct characters51
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique20 ?
Unique (%)58.8%

Sample

1st rowVasco da Gama
2nd rowDavid Livingstone
3rd rowThomas Nelson (publisher)
4th rowGeorg Edvard von Alfthan
5th rowConrad Kilian
ValueCountFrequency (%)
david 4
 
4.2%
livingstone 4
 
4.2%
rené 3
 
3.2%
caillié 3
 
3.2%
angus 3
 
3.2%
buchanan 3
 
3.2%
richardson 2
 
2.1%
austin 2
 
2.1%
the 2
 
2.1%
of 2
 
2.1%
Other values (64) 67
70.5%
2025-03-20T14:00:41.248046image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
61
 
9.1%
a 55
 
8.2%
i 53
 
7.9%
n 48
 
7.2%
r 43
 
6.4%
o 39
 
5.8%
e 37
 
5.5%
s 35
 
5.2%
t 30
 
4.5%
d 24
 
3.6%
Other values (41) 246
36.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 671
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
61
 
9.1%
a 55
 
8.2%
i 53
 
7.9%
n 48
 
7.2%
r 43
 
6.4%
o 39
 
5.8%
e 37
 
5.5%
s 35
 
5.2%
t 30
 
4.5%
d 24
 
3.6%
Other values (41) 246
36.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 671
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
61
 
9.1%
a 55
 
8.2%
i 53
 
7.9%
n 48
 
7.2%
r 43
 
6.4%
o 39
 
5.8%
e 37
 
5.5%
s 35
 
5.2%
t 30
 
4.5%
d 24
 
3.6%
Other values (41) 246
36.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 671
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
61
 
9.1%
a 55
 
8.2%
i 53
 
7.9%
n 48
 
7.2%
r 43
 
6.4%
o 39
 
5.8%
e 37
 
5.5%
s 35
 
5.2%
t 30
 
4.5%
d 24
 
3.6%
Other values (41) 246
36.7%
Distinct25
Distinct (%)73.5%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:41.761240image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length13
Median length10
Mean length8.9411765
Min length0

Characters and Unicode

Total characters304
Distinct characters22
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique20 ?
Unique (%)58.8%

Sample

1st row1469
2nd row19/03/1813
3rd row
4th row17/06/1856
5th row23/08/1898
ValueCountFrequency (%)
19/03/1813 4
 
11.8%
1886 3
 
8.8%
19/11/1799 3
 
8.8%
13/04/1848 2
 
5.9%
2/07/1809 2
 
5.9%
27/09/1883 1
 
2.9%
17/06/1856 1
 
2.9%
23/08/1898 1
 
2.9%
23/11/1860 1
 
2.9%
23/09/1870 1
 
2.9%
Other values (15) 15
44.1%
2025-03-20T14:00:42.544097image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
1 69
22.7%
/ 56
18.4%
8 39
12.8%
0 28
9.2%
3 22
 
7.2%
9 21
 
6.9%
7 14
 
4.6%
2 14
 
4.6%
6 12
 
3.9%
4 12
 
3.9%
Other values (12) 17
 
5.6%

Most occurring categories

ValueCountFrequency (%)
(unknown) 304
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 69
22.7%
/ 56
18.4%
8 39
12.8%
0 28
9.2%
3 22
 
7.2%
9 21
 
6.9%
7 14
 
4.6%
2 14
 
4.6%
6 12
 
3.9%
4 12
 
3.9%
Other values (12) 17
 
5.6%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 304
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 69
22.7%
/ 56
18.4%
8 39
12.8%
0 28
9.2%
3 22
 
7.2%
9 21
 
6.9%
7 14
 
4.6%
2 14
 
4.6%
6 12
 
3.9%
4 12
 
3.9%
Other values (12) 17
 
5.6%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 304
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 69
22.7%
/ 56
18.4%
8 39
12.8%
0 28
9.2%
3 22
 
7.2%
9 21
 
6.9%
7 14
 
4.6%
2 14
 
4.6%
6 12
 
3.9%
4 12
 
3.9%
Other values (12) 17
 
5.6%
Distinct22
Distinct (%)64.7%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:43.141262image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length45
Median length30
Mean length20.882353
Min length0

Characters and Unicode

Total characters710
Distinct characters50
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique16 ?
Unique (%)47.1%

Sample

1st rowSines (Portugal)
2nd rowBlantyre (Scotland)
3rd row
4th rowHelsinki (Finland)
5th rowDesaignes (Ardèche, France)
ValueCountFrequency (%)
france 8
 
10.1%
scotland 7
 
8.9%
germany 5
 
6.3%
london 4
 
5.1%
blantyre 4
 
5.1%
islands 3
 
3.8%
states 3
 
3.8%
united 3
 
3.8%
kirkwall 3
 
3.8%
mauzé-sur-le-mignon 3
 
3.8%
Other values (32) 36
45.6%
2025-03-20T14:00:44.147050image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
n 70
 
9.9%
a 58
 
8.2%
e 57
 
8.0%
46
 
6.5%
r 36
 
5.1%
l 36
 
5.1%
i 34
 
4.8%
t 29
 
4.1%
s 28
 
3.9%
( 27
 
3.8%
Other values (40) 289
40.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 710
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
n 70
 
9.9%
a 58
 
8.2%
e 57
 
8.0%
46
 
6.5%
r 36
 
5.1%
l 36
 
5.1%
i 34
 
4.8%
t 29
 
4.1%
s 28
 
3.9%
( 27
 
3.8%
Other values (40) 289
40.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 710
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
n 70
 
9.9%
a 58
 
8.2%
e 57
 
8.0%
46
 
6.5%
r 36
 
5.1%
l 36
 
5.1%
i 34
 
4.8%
t 29
 
4.1%
s 28
 
3.9%
( 27
 
3.8%
Other values (40) 289
40.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 710
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
n 70
 
9.9%
a 58
 
8.2%
e 57
 
8.0%
46
 
6.5%
r 36
 
5.1%
l 36
 
5.1%
i 34
 
4.8%
t 29
 
4.1%
s 28
 
3.9%
( 27
 
3.8%
Other values (40) 289
40.7%
Distinct25
Distinct (%)73.5%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:44.753742image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length13
Median length11.5
Mean length8.9117647
Min length0

Characters and Unicode

Total characters303
Distinct characters22
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique20 ?
Unique (%)58.8%

Sample

1st row24/12/1524
2nd row1/05/1873
3rd row
4th row23/03/1901
5th row29/04/1950
ValueCountFrequency (%)
1/05/1873 4
 
11.8%
1954 3
 
8.8%
17/05/1838 3
 
8.8%
1/03/1925 2
 
5.9%
4/03/1851 2
 
5.9%
22/08/1914 1
 
2.9%
23/03/1901 1
 
2.9%
29/04/1950 1
 
2.9%
14/11/1925 1
 
2.9%
16/01/1958 1
 
2.9%
Other values (15) 15
44.1%
2025-03-20T14:00:46.737742image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
1 64
21.1%
/ 58
19.1%
0 31
10.2%
8 22
 
7.3%
5 21
 
6.9%
9 21
 
6.9%
3 19
 
6.3%
4 16
 
5.3%
2 16
 
5.3%
7 12
 
4.0%
Other values (12) 23
 
7.6%

Most occurring categories

ValueCountFrequency (%)
(unknown) 303
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 64
21.1%
/ 58
19.1%
0 31
10.2%
8 22
 
7.3%
5 21
 
6.9%
9 21
 
6.9%
3 19
 
6.3%
4 16
 
5.3%
2 16
 
5.3%
7 12
 
4.0%
Other values (12) 23
 
7.6%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 303
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 64
21.1%
/ 58
19.1%
0 31
10.2%
8 22
 
7.3%
5 21
 
6.9%
9 21
 
6.9%
3 19
 
6.3%
4 16
 
5.3%
2 16
 
5.3%
7 12
 
4.0%
Other values (12) 23
 
7.6%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 303
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 64
21.1%
/ 58
19.1%
0 31
10.2%
8 22
 
7.3%
5 21
 
6.9%
9 21
 
6.9%
3 19
 
6.3%
4 16
 
5.3%
2 16
 
5.3%
7 12
 
4.0%
Other values (12) 23
 
7.6%
Distinct21
Distinct (%)61.8%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:47.599622image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length38
Median length23
Mean length17.529412
Min length0

Characters and Unicode

Total characters596
Distinct characters47
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique15 ?
Unique (%)44.1%

Sample

1st rowKochi (India)
2nd rowLake Bangweulu (Zambia)
3rd row
4th rowArtjärvi (Finland)
5th rowGrenoble (France)
ValueCountFrequency (%)
not 6
 
8.0%
specified 6
 
8.0%
france 5
 
6.7%
lake 4
 
5.3%
bangweulu 4
 
5.3%
zambia 4
 
5.3%
la 4
 
5.3%
gripperie-saint-symphorien 3
 
4.0%
kukawa 2
 
2.7%
england 2
 
2.7%
Other values (30) 35
46.7%
2025-03-20T14:00:49.470412image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
a 56
 
9.4%
e 52
 
8.7%
i 50
 
8.4%
42
 
7.0%
n 33
 
5.5%
r 31
 
5.2%
( 23
 
3.9%
) 23
 
3.9%
o 22
 
3.7%
s 20
 
3.4%
Other values (37) 244
40.9%

Most occurring categories

ValueCountFrequency (%)
(unknown) 596
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 56
 
9.4%
e 52
 
8.7%
i 50
 
8.4%
42
 
7.0%
n 33
 
5.5%
r 31
 
5.2%
( 23
 
3.9%
) 23
 
3.9%
o 22
 
3.7%
s 20
 
3.4%
Other values (37) 244
40.9%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 596
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 56
 
9.4%
e 52
 
8.7%
i 50
 
8.4%
42
 
7.0%
n 33
 
5.5%
r 31
 
5.2%
( 23
 
3.9%
) 23
 
3.9%
o 22
 
3.7%
s 20
 
3.4%
Other values (37) 244
40.9%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 596
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 56
 
9.4%
e 52
 
8.7%
i 50
 
8.4%
42
 
7.0%
n 33
 
5.5%
r 31
 
5.2%
( 23
 
3.9%
) 23
 
3.9%
o 22
 
3.7%
s 20
 
3.4%
Other values (37) 244
40.9%

Nationality
Categorical

High correlation 

Distinct11
Distinct (%)32.4%
Missing0
Missing (%)0.0%
Memory size544.0 B
French
Scottish
British
American
Finnish
Other values (6)

Length

Max length15
Median length13
Mean length7.3529412
Min length0

Characters and Unicode

Total characters250
Distinct characters25
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique4 ?
Unique (%)11.8%

Sample

1st rowPortuguese
2nd rowScottish
3rd row
4th rowFinnish
5th rowFrench

Common Values

ValueCountFrequency (%)
French 8
23.5%
Scottish 7
20.6%
British 6
17.6%
American 3
 
8.8%
Finnish 2
 
5.9%
German 2
 
5.9%
Austrian 2
 
5.9%
Portuguese 1
 
2.9%
1
 
2.9%
Franco-American 1
 
2.9%

Length

2025-03-20T14:00:50.000196image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
french 8
23.5%
scottish 7
20.6%
british 6
17.6%
american 3
 
8.8%
finnish 2
 
5.9%
german 2
 
5.9%
austrian 2
 
5.9%
portuguese 1
 
2.9%
franco-american 1
 
2.9%
not 1
 
2.9%

Most occurring characters

ValueCountFrequency (%)
i 31
12.4%
t 24
9.6%
r 24
9.6%
h 23
9.2%
n 21
8.4%
c 21
8.4%
s 19
 
7.6%
e 18
 
7.2%
F 11
 
4.4%
o 10
 
4.0%
Other values (15) 48
19.2%

Most occurring categories

ValueCountFrequency (%)
(unknown) 250
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
i 31
12.4%
t 24
9.6%
r 24
9.6%
h 23
9.2%
n 21
8.4%
c 21
8.4%
s 19
 
7.6%
e 18
 
7.2%
F 11
 
4.4%
o 10
 
4.0%
Other values (15) 48
19.2%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 250
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
i 31
12.4%
t 24
9.6%
r 24
9.6%
h 23
9.2%
n 21
8.4%
c 21
8.4%
s 19
 
7.6%
e 18
 
7.2%
F 11
 
4.4%
o 10
 
4.0%
Other values (15) 48
19.2%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 250
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
i 31
12.4%
t 24
9.6%
r 24
9.6%
h 23
9.2%
n 21
8.4%
c 21
8.4%
s 19
 
7.6%
e 18
 
7.2%
F 11
 
4.4%
o 10
 
4.0%
Other values (15) 48
19.2%
Distinct21
Distinct (%)61.8%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:50.767463image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length80
Median length43
Mean length30.411765
Min length8

Characters and Unicode

Total characters1034
Distinct characters28
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique15 ?
Unique (%)44.1%

Sample

1st rowexplorer, aristocrat
2nd rowexplorer, writer, geographer, missionary
3rd rowexplorer, traveler, writer
4th rowaristocrat, military, writer
5th rowgeologist, explorer
ValueCountFrequency (%)
explorer 22
20.6%
writer 17
15.9%
geographer 8
 
7.5%
traveler 5
 
4.7%
military 5
 
4.7%
academic 4
 
3.7%
missionary 4
 
3.7%
photographer 3
 
2.8%
geologist 3
 
2.8%
filmmaker 3
 
2.8%
Other values (25) 33
30.8%
2025-03-20T14:00:51.904758image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
r 144
13.9%
e 119
11.5%
i 85
 
8.2%
o 78
 
7.5%
73
 
7.1%
t 70
 
6.8%
, 69
 
6.7%
a 60
 
5.8%
l 55
 
5.3%
p 46
 
4.4%
Other values (18) 235
22.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 1034
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
r 144
13.9%
e 119
11.5%
i 85
 
8.2%
o 78
 
7.5%
73
 
7.1%
t 70
 
6.8%
, 69
 
6.7%
a 60
 
5.8%
l 55
 
5.3%
p 46
 
4.4%
Other values (18) 235
22.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 1034
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
r 144
13.9%
e 119
11.5%
i 85
 
8.2%
o 78
 
7.5%
73
 
7.1%
t 70
 
6.8%
, 69
 
6.7%
a 60
 
5.8%
l 55
 
5.3%
p 46
 
4.4%
Other values (18) 235
22.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 1034
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
r 144
13.9%
e 119
11.5%
i 85
 
8.2%
o 78
 
7.5%
73
 
7.1%
t 70
 
6.8%
, 69
 
6.7%
a 60
 
5.8%
l 55
 
5.3%
p 46
 
4.4%
Other values (18) 235
22.7%

Language
Categorical

High correlation 

Distinct6
Distinct (%)17.6%
Missing0
Missing (%)0.0%
Memory size544.0 B
English
23 
French
Swedish
 
1
Dutch
 
1
German
 
1

Length

Max length7
Median length7
Mean length6.7058824
Min length5

Characters and Unicode

Total characters228
Distinct characters20
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique4 ?
Unique (%)11.8%

Sample

1st rowEnglish
2nd rowEnglish
3rd rowEnglish
4th rowSwedish
5th rowFrench

Common Values

ValueCountFrequency (%)
English 23
67.6%
French 7
 
20.6%
Swedish 1
 
2.9%
Dutch 1
 
2.9%
German 1
 
2.9%
Finnish 1
 
2.9%

Length

2025-03-20T14:00:52.328343image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:00:52.673100image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
english 23
67.6%
french 7
 
20.6%
swedish 1
 
2.9%
dutch 1
 
2.9%
german 1
 
2.9%
finnish 1
 
2.9%

Most occurring characters

ValueCountFrequency (%)
h 33
14.5%
n 33
14.5%
i 26
11.4%
s 25
11.0%
E 23
10.1%
g 23
10.1%
l 23
10.1%
e 9
 
3.9%
c 8
 
3.5%
r 8
 
3.5%
Other values (10) 17
7.5%

Most occurring categories

ValueCountFrequency (%)
(unknown) 228
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
h 33
14.5%
n 33
14.5%
i 26
11.4%
s 25
11.0%
E 23
10.1%
g 23
10.1%
l 23
10.1%
e 9
 
3.9%
c 8
 
3.5%
r 8
 
3.5%
Other values (10) 17
7.5%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 228
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
h 33
14.5%
n 33
14.5%
i 26
11.4%
s 25
11.0%
E 23
10.1%
g 23
10.1%
l 23
10.1%
e 9
 
3.9%
c 8
 
3.5%
r 8
 
3.5%
Other values (10) 17
7.5%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 228
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
h 33
14.5%
n 33
14.5%
i 26
11.4%
s 25
11.0%
E 23
10.1%
g 23
10.1%
l 23
10.1%
e 9
 
3.9%
c 8
 
3.5%
r 8
 
3.5%
Other values (10) 17
7.5%

URL
Text

Unique 

Distinct34
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:53.470013image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length62
Median length62
Mean length61.441176
Min length57

Characters and Unicode

Total characters2089
Distinct characters32
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique34 ?
Unique (%)100.0%

Sample

1st rowhttps://www.gutenberg.org/cache/epub/46440/pg46440-images.html
2nd rowhttps://www.gutenberg.org/cache/epub/2519/pg2519-images.html
3rd rowhttps://www.gutenberg.org/cache/epub/72209/pg72209-images.html
4th rowhttps://www.gutenberg.org/cache/epub/62623/pg62623-images.html
5th rowhttps://www.gutenberg.org/cache/epub/73291/pg73291-images.html
ValueCountFrequency (%)
https://www.gutenberg.org/cache/epub/46440/pg46440-images.html 1
 
2.9%
https://www.gutenberg.org/cache/epub/16117/pg16117-images.html 1
 
2.9%
https://www.gutenberg.org/cache/epub/70171/pg70171-images.html 1
 
2.9%
https://www.gutenberg.org/cache/epub/17164/pg17164-images.html 1
 
2.9%
https://www.gutenberg.org/cache/epub/1039/pg1039-images.html 1
 
2.9%
https://www.gutenberg.org/cache/epub/71199/pg71199-images.html 1
 
2.9%
https://www.gutenberg.org/cache/epub/14142/pg14142-images.html 1
 
2.9%
https://www.gutenberg.org/cache/epub/49591/pg49591-images.html 1
 
2.9%
https://www.gutenberg.org/cache/epub/45396/pg45396-images.html 1
 
2.9%
https://www.gutenberg.org/cache/epub/70221/pg70221-images.html 1
 
2.9%
Other values (24) 24
70.6%
2025-03-20T14:00:54.579640image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
/ 204
 
9.8%
g 164
 
7.9%
e 164
 
7.9%
t 136
 
6.5%
h 105
 
5.0%
w 102
 
4.9%
. 102
 
4.9%
p 96
 
4.6%
s 68
 
3.3%
r 68
 
3.3%
Other values (22) 880
42.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 2089
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
/ 204
 
9.8%
g 164
 
7.9%
e 164
 
7.9%
t 136
 
6.5%
h 105
 
5.0%
w 102
 
4.9%
. 102
 
4.9%
p 96
 
4.6%
s 68
 
3.3%
r 68
 
3.3%
Other values (22) 880
42.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 2089
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
/ 204
 
9.8%
g 164
 
7.9%
e 164
 
7.9%
t 136
 
6.5%
h 105
 
5.0%
w 102
 
4.9%
. 102
 
4.9%
p 96
 
4.6%
s 68
 
3.3%
r 68
 
3.3%
Other values (22) 880
42.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 2089
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
/ 204
 
9.8%
g 164
 
7.9%
e 164
 
7.9%
t 136
 
6.5%
h 105
 
5.0%
w 102
 
4.9%
. 102
 
4.9%
p 96
 
4.6%
s 68
 
3.3%
r 68
 
3.3%
Other values (22) 880
42.1%
Distinct32
Distinct (%)94.1%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:55.323330image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length26
Median length22.5
Mean length17.764706
Min length9

Characters and Unicode

Total characters604
Distinct characters35
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique30 ?
Unique (%)88.2%

Sample

1st rowravenstein2017journal
2nd rowlivingstone1875popular
3rd rownelson2024biographical
4th rowvon1892afrikanska
5th rowkilian1925hoggar
ValueCountFrequency (%)
caillie1830travels 2
 
5.9%
lenz1886timbouctou 2
 
5.9%
nelson2024biographical 1
 
2.9%
von1892afrikanska 1
 
2.9%
kilian1925hoggar 1
 
2.9%
le1890sahara 1
 
2.9%
cannon1913botanical 1
 
2.9%
buchanan1921exploration 1
 
2.9%
grogan1900cape 1
 
2.9%
de2023het 1
 
2.9%
Other values (22) 22
64.7%
2025-03-20T14:00:56.456752image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
a 57
 
9.4%
n 42
 
7.0%
o 39
 
6.5%
i 38
 
6.3%
r 36
 
6.0%
e 34
 
5.6%
1 33
 
5.5%
t 31
 
5.1%
l 30
 
5.0%
s 28
 
4.6%
Other values (25) 236
39.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 604
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 57
 
9.4%
n 42
 
7.0%
o 39
 
6.5%
i 38
 
6.3%
r 36
 
6.0%
e 34
 
5.6%
1 33
 
5.5%
t 31
 
5.1%
l 30
 
5.0%
s 28
 
4.6%
Other values (25) 236
39.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 604
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 57
 
9.4%
n 42
 
7.0%
o 39
 
6.5%
i 38
 
6.3%
r 36
 
6.0%
e 34
 
5.6%
1 33
 
5.5%
t 31
 
5.1%
l 30
 
5.0%
s 28
 
4.6%
Other values (25) 236
39.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 604
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 57
 
9.4%
n 42
 
7.0%
o 39
 
6.5%
i 38
 
6.3%
r 36
 
6.0%
e 34
 
5.6%
1 33
 
5.5%
t 31
 
5.1%
l 30
 
5.0%
s 28
 
4.6%
Other values (25) 236
39.1%
Distinct32
Distinct (%)94.1%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:57.170402image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length92
Median length10
Mean length17.117647
Min length10

Characters and Unicode

Total characters582
Distinct characters45
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique30 ?
Unique (%)88.2%

Sample

1st row08/07/1497
2nd row15/06/1852
3rd row27/08/1825
4th row01/07/1890
5th row08/01/1922
ValueCountFrequency (%)
non 8
 
10.3%
mais 3
 
3.8%
spécifié 3
 
3.8%
spécifiée 3
 
3.8%
à 2
 
2.6%
information 2
 
2.6%
en 2
 
2.6%
le 2
 
2.6%
19/04/1827 2
 
2.6%
disponible 2
 
2.6%
Other values (49) 49
62.8%
2025-03-20T14:00:58.255095image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
/ 52
 
8.9%
1 49
 
8.4%
44
 
7.6%
0 43
 
7.4%
8 28
 
4.8%
n 25
 
4.3%
e 24
 
4.1%
i 24
 
4.1%
s 22
 
3.8%
o 21
 
3.6%
Other values (35) 250
43.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 582
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
/ 52
 
8.9%
1 49
 
8.4%
44
 
7.6%
0 43
 
7.4%
8 28
 
4.8%
n 25
 
4.3%
e 24
 
4.1%
i 24
 
4.1%
s 22
 
3.8%
o 21
 
3.6%
Other values (35) 250
43.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 582
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
/ 52
 
8.9%
1 49
 
8.4%
44
 
7.6%
0 43
 
7.4%
8 28
 
4.8%
n 25
 
4.3%
e 24
 
4.1%
i 24
 
4.1%
s 22
 
3.8%
o 21
 
3.6%
Other values (35) 250
43.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 582
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
/ 52
 
8.9%
1 49
 
8.4%
44
 
7.6%
0 43
 
7.4%
8 28
 
4.8%
n 25
 
4.3%
e 24
 
4.1%
i 24
 
4.1%
s 22
 
3.8%
o 21
 
3.6%
Other values (35) 250
43.0%

Departure Age
Real number (ℝ)

High correlation  Zeros 

Distinct17
Distinct (%)50.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean24.264706
Minimum0
Maximum73
Zeros10
Zeros (%)29.4%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:00:58.581299image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median28
Q333.75
95-th percentile53.7
Maximum73
Range73
Interquartile range (IQR)33.75

Descriptive statistics

Standard deviation18.529761
Coefficient of variation (CV)0.76365076
Kurtosis0.056249614
Mean24.264706
Median Absolute Deviation (MAD)7
Skewness0.20361249
Sum825
Variance343.35205
MonotonicityNot monotonic
2025-03-20T14:00:58.995107image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=17)
ValueCountFrequency (%)
0 10
29.4%
28 4
 
11.8%
27 3
 
8.8%
31 2
 
5.9%
32 2
 
5.9%
35 2
 
5.9%
40 1
 
2.9%
55 1
 
2.9%
53 1
 
2.9%
36 1
 
2.9%
Other values (7) 7
20.6%
ValueCountFrequency (%)
0 10
29.4%
23 1
 
2.9%
24 1
 
2.9%
26 1
 
2.9%
27 3
 
8.8%
28 4
 
11.8%
31 2
 
5.9%
32 2
 
5.9%
33 1
 
2.9%
34 1
 
2.9%
ValueCountFrequency (%)
73 1
2.9%
55 1
2.9%
53 1
2.9%
40 1
2.9%
39 1
2.9%
36 1
2.9%
35 2
5.9%
34 1
2.9%
33 1
2.9%
32 2
5.9%
Distinct20
Distinct (%)58.8%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:00:59.629638image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length13
Median length10
Mean length11.235294
Min length10

Characters and Unicode

Total characters382
Distinct characters22
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique18 ?
Unique (%)52.9%

Sample

1st row25/04/1499
2nd row19/03/1866
3rd rowNot specified
4th row01/04/1891
5th row08/02/1922
ValueCountFrequency (%)
not 14
29.2%
specified 14
29.2%
07/09/1828 2
 
4.2%
19/03/1866 1
 
2.1%
01/04/1891 1
 
2.1%
08/02/1922 1
 
2.1%
14/07/1889 1
 
2.1%
06/08/1920 1
 
2.1%
19/06/1910 1
 
2.1%
20/05/1856 1
 
2.1%
Other values (11) 11
22.9%
2025-03-20T14:01:00.668741image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
1 42
 
11.0%
/ 40
 
10.5%
0 32
 
8.4%
e 28
 
7.3%
i 28
 
7.3%
8 22
 
5.8%
2 17
 
4.5%
9 15
 
3.9%
d 14
 
3.7%
o 14
 
3.7%
Other values (12) 130
34.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 382
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 42
 
11.0%
/ 40
 
10.5%
0 32
 
8.4%
e 28
 
7.3%
i 28
 
7.3%
8 22
 
5.8%
2 17
 
4.5%
9 15
 
3.9%
d 14
 
3.7%
o 14
 
3.7%
Other values (12) 130
34.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 382
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 42
 
11.0%
/ 40
 
10.5%
0 32
 
8.4%
e 28
 
7.3%
i 28
 
7.3%
8 22
 
5.8%
2 17
 
4.5%
9 15
 
3.9%
d 14
 
3.7%
o 14
 
3.7%
Other values (12) 130
34.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 382
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 42
 
11.0%
/ 40
 
10.5%
0 32
 
8.4%
e 28
 
7.3%
i 28
 
7.3%
8 22
 
5.8%
2 17
 
4.5%
9 15
 
3.9%
d 14
 
3.7%
o 14
 
3.7%
Other values (12) 130
34.0%

Arrival Age
Real number (ℝ)

High correlation  Zeros 

Distinct16
Distinct (%)47.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean20.147059
Minimum0
Maximum59
Zeros14
Zeros (%)41.2%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:00.983912image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median27.5
Q331.75
95-th percentile53.7
Maximum59
Range59
Interquartile range (IQR)31.75

Descriptive statistics

Standard deviation18.769951
Coefficient of variation (CV)0.93164719
Kurtosis-1.0317815
Mean20.147059
Median Absolute Deviation (MAD)20.5
Skewness0.25502823
Sum685
Variance352.31105
MonotonicityNot monotonic
2025-03-20T14:01:01.314201image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=16)
ValueCountFrequency (%)
0 14
41.2%
28 4
 
11.8%
29 2
 
5.9%
34 2
 
5.9%
53 1
 
2.9%
23 1
 
2.9%
26 1
 
2.9%
43 1
 
2.9%
35 1
 
2.9%
27 1
 
2.9%
Other values (6) 6
17.6%
ValueCountFrequency (%)
0 14
41.2%
23 1
 
2.9%
26 1
 
2.9%
27 1
 
2.9%
28 4
 
11.8%
29 2
 
5.9%
30 1
 
2.9%
31 1
 
2.9%
32 1
 
2.9%
33 1
 
2.9%
ValueCountFrequency (%)
59 1
2.9%
55 1
2.9%
53 1
2.9%
43 1
2.9%
35 1
2.9%
34 2
5.9%
33 1
2.9%
32 1
2.9%
31 1
2.9%
30 1
2.9%

Travel duration in days
Real number (ℝ)

High correlation  Zeros 

Distinct20
Distinct (%)58.8%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean452.73529
Minimum0
Maximum5025
Zeros14
Zeros (%)41.2%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:01.623947image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median62.5
Q3463.5
95-th percentile1843
Maximum5025
Range5025
Interquartile range (IQR)463.5

Descriptive statistics

Standard deviation976.14773
Coefficient of variation (CV)2.1561114
Kurtosis15.069364
Mean452.73529
Median Absolute Deviation (MAD)62.5
Skewness3.6317266
Sum15393
Variance952864.38
MonotonicityNot monotonic
2025-03-20T14:01:01.968045image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=20)
ValueCountFrequency (%)
0 14
41.2%
507 2
 
5.9%
999 1
 
2.9%
1316 1
 
2.9%
710 1
 
2.9%
142 1
 
2.9%
232 1
 
2.9%
182 1
 
2.9%
333 1
 
2.9%
1465 1
 
2.9%
Other values (10) 10
29.4%
ValueCountFrequency (%)
0 14
41.2%
15 1
 
2.9%
31 1
 
2.9%
36 1
 
2.9%
89 1
 
2.9%
122 1
 
2.9%
142 1
 
2.9%
182 1
 
2.9%
207 1
 
2.9%
232 1
 
2.9%
ValueCountFrequency (%)
5025 1
2.9%
2545 1
2.9%
1465 1
2.9%
1316 1
2.9%
999 1
2.9%
710 1
2.9%
656 1
2.9%
507 2
5.9%
333 1
2.9%
274 1
2.9%

Money
Categorical

High correlation 

Distinct16
Distinct (%)47.1%
Missing0
Missing (%)0.0%
Memory size544.0 B
19 
The book mentions that he left with little money and had to find ways to earn a living during his journey
 
1
Enough money for a guide, camels, and food
 
1
Large sum withdrawn from Kano bank, mostly silver coins due to higher local value
 
1
An annual salary of 100 pounds as a missionary
 
1
Other values (11)
11 

Length

Max length138
Median length0
Mean length32.294118
Min length0

Characters and Unicode

Total characters1098
Distinct characters50
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique15 ?
Unique (%)44.1%

Sample

1st row
2nd row
3rd row
4th rowThe book mentions that he left with little money and had to find ways to earn a living during his journey
5th row

Common Values

ValueCountFrequency (%)
19
55.9%
The book mentions that he left with little money and had to find ways to earn a living during his journey 1
 
2.9%
Enough money for a guide, camels, and food 1
 
2.9%
Large sum withdrawn from Kano bank, mostly silver coins due to higher local value 1
 
2.9%
An annual salary of 100 pounds as a missionary 1
 
2.9%
He mentions spending about 150 pounds on forced gifts until September 19, 1850 1
 
2.9%
He traded goods like cloth, beads, gunpowder, and ivory. Financial dealings included Mohamad bin Saleh and a 4,000-rupee check to Dr. Kirk 1
 
2.9%
Bills of exchange and minimize cash for security reasons 1
 
2.9%
Upon arriving in Timbuktu, he has about 800 francs from the sale of his camels, a small remainder of about 500 francs, and some cloth 1
 
2.9%
A few thousand francs 1
 
2.9%
Other values (6) 6
 
17.6%

Length

2025-03-20T14:01:02.361618image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
and 9
 
4.6%
a 8
 
4.1%
he 7
 
3.6%
of 6
 
3.1%
francs 6
 
3.1%
the 5
 
2.6%
for 4
 
2.0%
his 4
 
2.0%
to 4
 
2.0%
about 3
 
1.5%
Other values (124) 140
71.4%

Most occurring characters

ValueCountFrequency (%)
181
16.5%
e 83
 
7.6%
a 75
 
6.8%
n 74
 
6.7%
o 66
 
6.0%
s 63
 
5.7%
i 60
 
5.5%
t 53
 
4.8%
r 51
 
4.6%
l 40
 
3.6%
Other values (40) 352
32.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 1098
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
181
16.5%
e 83
 
7.6%
a 75
 
6.8%
n 74
 
6.7%
o 66
 
6.0%
s 63
 
5.7%
i 60
 
5.5%
t 53
 
4.8%
r 51
 
4.6%
l 40
 
3.6%
Other values (40) 352
32.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 1098
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
181
16.5%
e 83
 
7.6%
a 75
 
6.8%
n 74
 
6.7%
o 66
 
6.0%
s 63
 
5.7%
i 60
 
5.5%
t 53
 
4.8%
r 51
 
4.6%
l 40
 
3.6%
Other values (40) 352
32.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 1098
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
181
16.5%
e 83
 
7.6%
a 75
 
6.8%
n 74
 
6.7%
o 66
 
6.0%
s 63
 
5.7%
i 60
 
5.5%
t 53
 
4.8%
r 51
 
4.6%
l 40
 
3.6%
Other values (40) 352
32.1%

Goal
Text

Unique 

Distinct34
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:01:03.163702image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length274
Median length86
Mean length97.264706
Min length0

Characters and Unicode

Total characters3307
Distinct characters54
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique34 ?
Unique (%)100.0%

Sample

1st rowDiscover a sea route to India
2nd rowTo expand knowledge of East and Central Africa's geography, minerals, and agriculture, improve relations with locals, encourage industrial activities and land cultivation for export to England, and help end the slave trade by providing a more profitable economic alternative
3rd rowExploring interior Africa, particularly tracing the course and trying to determine the source of the Niger River
4th rowThe author mentions traveling to escape personal issues and discover new horizons
5th rowScientific mission in Central Sahara, focused on geology, botany, and morphology
ValueCountFrequency (%)
the 47
 
9.0%
and 38
 
7.3%
to 25
 
4.8%
of 16
 
3.1%
sahara 10
 
1.9%
explore 10
 
1.9%
in 8
 
1.5%
africa 7
 
1.3%
a 6
 
1.1%
was 6
 
1.1%
Other values (255) 350
66.9%
2025-03-20T14:01:04.370627image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
490
14.8%
e 284
 
8.6%
a 259
 
7.8%
o 228
 
6.9%
i 214
 
6.5%
t 205
 
6.2%
r 200
 
6.0%
n 186
 
5.6%
s 153
 
4.6%
l 130
 
3.9%
Other values (44) 958
29.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3307
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
490
14.8%
e 284
 
8.6%
a 259
 
7.8%
o 228
 
6.9%
i 214
 
6.5%
t 205
 
6.2%
r 200
 
6.0%
n 186
 
5.6%
s 153
 
4.6%
l 130
 
3.9%
Other values (44) 958
29.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3307
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
490
14.8%
e 284
 
8.6%
a 259
 
7.8%
o 228
 
6.9%
i 214
 
6.5%
t 205
 
6.2%
r 200
 
6.0%
n 186
 
5.6%
s 153
 
4.6%
l 130
 
3.9%
Other values (44) 958
29.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3307
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
490
14.8%
e 284
 
8.6%
a 259
 
7.8%
o 228
 
6.9%
i 214
 
6.5%
t 205
 
6.2%
r 200
 
6.0%
n 186
 
5.6%
s 153
 
4.6%
l 130
 
3.9%
Other values (44) 958
29.0%
Distinct29
Distinct (%)85.3%
Missing0
Missing (%)0.0%
Memory size544.0 B
2025-03-20T14:01:05.556157image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Length

Max length350
Median length136.5
Mean length106.44118
Min length0

Characters and Unicode

Total characters3619
Distinct characters57
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique26 ?
Unique (%)76.5%

Sample

1st rowNot specified
2nd rowWhile Livingstone and his companions explored vast lands, established relations with local chiefs, and gathered valuable geographical and scientific information, their efforts to foster trade and encourage indigenous industry were hindered by factors such as the ongoing slave trade, tribal rivalries, and natural obstacles like cataracts and drought
3rd rowOudney died during the expedition before determining the course and source of the Niger River. However, he gathered significant information on Central Africa before his death
4th row
5th rowYes, Kilian successfully completed his scientific mission, reporting numerous geological, botanical, and ethnographic observations and data
ValueCountFrequency (%)
the 39
 
7.0%
and 36
 
6.5%
of 18
 
3.2%
to 16
 
2.9%
his 16
 
2.9%
in 10
 
1.8%
he 10
 
1.8%
author 6
 
1.1%
a 6
 
1.1%
before 6
 
1.1%
Other values (284) 391
70.6%
2025-03-20T14:01:07.216272image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
523
14.5%
e 363
 
10.0%
a 261
 
7.2%
i 250
 
6.9%
n 222
 
6.1%
t 212
 
5.9%
o 207
 
5.7%
s 197
 
5.4%
r 181
 
5.0%
d 151
 
4.2%
Other values (47) 1052
29.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3619
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
523
14.5%
e 363
 
10.0%
a 261
 
7.2%
i 250
 
6.9%
n 222
 
6.1%
t 212
 
5.9%
o 207
 
5.7%
s 197
 
5.4%
r 181
 
5.0%
d 151
 
4.2%
Other values (47) 1052
29.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3619
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
523
14.5%
e 363
 
10.0%
a 261
 
7.2%
i 250
 
6.9%
n 222
 
6.1%
t 212
 
5.9%
o 207
 
5.7%
s 197
 
5.4%
r 181
 
5.0%
d 151
 
4.2%
Other values (47) 1052
29.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3619
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
523
14.5%
e 363
 
10.0%
a 261
 
7.2%
i 250
 
6.9%
n 222
 
6.1%
t 212
 
5.9%
o 207
 
5.7%
s 197
 
5.4%
r 181
 
5.0%
d 151
 
4.2%
Other values (47) 1052
29.1%

Number of steps
Real number (ℝ)

High correlation 

Distinct24
Distinct (%)70.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean22.676471
Minimum5
Maximum78
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:07.554587image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum5
5-th percentile7.65
Q110
median16.5
Q325.75
95-th percentile55.4
Maximum78
Range73
Interquartile range (IQR)15.75

Descriptive statistics

Standard deviation17.728116
Coefficient of variation (CV)0.78178462
Kurtosis1.7691181
Mean22.676471
Median Absolute Deviation (MAD)7.5
Skewness1.5151682
Sum771
Variance314.2861
MonotonicityNot monotonic
2025-03-20T14:01:07.951957image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=24)
ValueCountFrequency (%)
10 4
 
11.8%
8 3
 
8.8%
14 3
 
8.8%
13 2
 
5.9%
18 2
 
5.9%
9 2
 
5.9%
17 1
 
2.9%
54 1
 
2.9%
48 1
 
2.9%
44 1
 
2.9%
Other values (14) 14
41.2%
ValueCountFrequency (%)
5 1
 
2.9%
7 1
 
2.9%
8 3
8.8%
9 2
5.9%
10 4
11.8%
13 2
5.9%
14 3
8.8%
16 1
 
2.9%
17 1
 
2.9%
18 2
5.9%
ValueCountFrequency (%)
78 1
2.9%
58 1
2.9%
54 1
2.9%
51 1
2.9%
48 1
2.9%
44 1
2.9%
40 1
2.9%
32 1
2.9%
26 1
2.9%
25 1
2.9%

Number of images
Real number (ℝ)

High correlation  Zeros 

Distinct20
Distinct (%)58.8%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean12.294118
Minimum0
Maximum82
Zeros10
Zeros (%)29.4%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:08.294282image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median6
Q315.5
95-th percentile43.65
Maximum82
Range82
Interquartile range (IQR)15.5

Descriptive statistics

Standard deviation18.088217
Coefficient of variation (CV)1.4712904
Kurtosis6.3349328
Mean12.294118
Median Absolute Deviation (MAD)6
Skewness2.3660582
Sum418
Variance327.1836
MonotonicityNot monotonic
2025-03-20T14:01:08.650614image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=20)
ValueCountFrequency (%)
0 10
29.4%
6 4
 
11.8%
3 3
 
8.8%
14 1
 
2.9%
34 1
 
2.9%
5 1
 
2.9%
7 1
 
2.9%
16 1
 
2.9%
37 1
 
2.9%
10 1
 
2.9%
Other values (10) 10
29.4%
ValueCountFrequency (%)
0 10
29.4%
1 1
 
2.9%
3 3
 
8.8%
4 1
 
2.9%
5 1
 
2.9%
6 4
 
11.8%
7 1
 
2.9%
9 1
 
2.9%
10 1
 
2.9%
13 1
 
2.9%
ValueCountFrequency (%)
82 1
2.9%
56 1
2.9%
37 1
2.9%
34 1
2.9%
33 1
2.9%
25 1
2.9%
22 1
2.9%
17 1
2.9%
16 1
2.9%
14 1
2.9%

Steps with null coordinates in %
Real number (ℝ)

High correlation  Zeros 

Distinct27
Distinct (%)79.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean35.127059
Minimum0
Maximum92.31
Zeros3
Zeros (%)8.8%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:09.004948image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q120
median32.5
Q349.5
95-th percentile74.74
Maximum92.31
Range92.31
Interquartile range (IQR)29.5

Descriptive statistics

Standard deviation24.018021
Coefficient of variation (CV)0.68374701
Kurtosis-0.49180169
Mean35.127059
Median Absolute Deviation (MAD)16.5
Skewness0.35955375
Sum1194.32
Variance576.86535
MonotonicityNot monotonic
2025-03-20T14:01:09.347268image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=27)
ValueCountFrequency (%)
20 4
 
11.8%
0 3
 
8.8%
50 2
 
5.9%
27.78 2
 
5.9%
78.12 1
 
2.9%
64.81 1
 
2.9%
72.92 1
 
2.9%
21.43 1
 
2.9%
47.73 1
 
2.9%
35 1
 
2.9%
Other values (17) 17
50.0%
ValueCountFrequency (%)
0 3
8.8%
4.76 1
 
2.9%
5.88 1
 
2.9%
7.69 1
 
2.9%
11.11 1
 
2.9%
12.5 1
 
2.9%
20 4
11.8%
21.43 1
 
2.9%
25 1
 
2.9%
27.78 2
5.9%
ValueCountFrequency (%)
92.31 1
2.9%
78.12 1
2.9%
72.92 1
2.9%
64.81 1
2.9%
60.26 1
2.9%
58.62 1
2.9%
57.14 1
2.9%
50 2
5.9%
48 1
2.9%
47.73 1
2.9%

Total distance traveled (km)
Real number (ℝ)

High correlation  Unique  Zeros 

Distinct34
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean5794.7106
Minimum0
Maximum35819.58
Zeros1
Zeros (%)2.9%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:09.666566image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile280.952
Q11587.9975
median3093.99
Q36165.1625
95-th percentile18439.98
Maximum35819.58
Range35819.58
Interquartile range (IQR)4577.165

Descriptive statistics

Standard deviation7414.4268
Coefficient of variation (CV)1.2795163
Kurtosis7.7542214
Mean5794.7106
Median Absolute Deviation (MAD)1950.175
Skewness2.5716488
Sum197020.16
Variance54973724
MonotonicityNot monotonic
2025-03-20T14:01:10.067945image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=34)
ValueCountFrequency (%)
35819.58 1
 
2.9%
4795.91 1
 
2.9%
505.91 1
 
2.9%
10422.71 1
 
2.9%
1128.15 1
 
2.9%
2272.64 1
 
2.9%
11009.18 1
 
2.9%
2766.24 1
 
2.9%
3862.91 1
 
2.9%
6332.11 1
 
2.9%
Other values (24) 24
70.6%
ValueCountFrequency (%)
0 1
2.9%
102.54 1
2.9%
377.02 1
2.9%
505.91 1
2.9%
641.25 1
2.9%
1028.81 1
2.9%
1128.15 1
2.9%
1159.48 1
2.9%
1513.94 1
2.9%
1810.17 1
2.9%
ValueCountFrequency (%)
35819.58 1
2.9%
22288 1
2.9%
16367.97 1
2.9%
15793.63 1
2.9%
11009.18 1
2.9%
10648.58 1
2.9%
10422.71 1
2.9%
8723.39 1
2.9%
6332.11 1
2.9%
5664.32 1
2.9%

Transport_Train
Categorical

High correlation  Missing 

Distinct5
Distinct (%)55.6%
Missing25
Missing (%)73.5%
Memory size544.0 B
3.0
1.0
2.0
4.0
10.0

Length

Max length4
Median length3
Mean length3.1111111
Min length3

Characters and Unicode

Total characters28
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)22.2%

Sample

1st row3.0
2nd row4.0
3rd row1.0
4th row3.0
5th row1.0

Common Values

ValueCountFrequency (%)
3.0 3
 
8.8%
1.0 2
 
5.9%
2.0 2
 
5.9%
4.0 1
 
2.9%
10.0 1
 
2.9%
(Missing) 25
73.5%

Length

2025-03-20T14:01:10.421278image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:11.327920image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
3.0 3
33.3%
1.0 2
22.2%
2.0 2
22.2%
4.0 1
 
11.1%
10.0 1
 
11.1%

Most occurring characters

ValueCountFrequency (%)
0 10
35.7%
. 9
32.1%
3 3
 
10.7%
1 3
 
10.7%
2 2
 
7.1%
4 1
 
3.6%

Most occurring categories

ValueCountFrequency (%)
(unknown) 28
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
0 10
35.7%
. 9
32.1%
3 3
 
10.7%
1 3
 
10.7%
2 2
 
7.1%
4 1
 
3.6%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 28
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
0 10
35.7%
. 9
32.1%
3 3
 
10.7%
1 3
 
10.7%
2 2
 
7.1%
4 1
 
3.6%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 28
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
0 10
35.7%
. 9
32.1%
3 3
 
10.7%
1 3
 
10.7%
2 2
 
7.1%
4 1
 
3.6%

Transport_Equid
Real number (ℝ)

High correlation  Missing 

Distinct9
Distinct (%)75.0%
Missing22
Missing (%)64.7%
Infinite0
Infinite (%)0.0%
Mean6.5
Minimum1
Maximum33
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:11.619076image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q11.75
median4.5
Q36.25
95-th percentile20.35
Maximum33
Range32
Interquartile range (IQR)4.5

Descriptive statistics

Standard deviation8.7853183
Coefficient of variation (CV)1.3515874
Kurtosis9.104337
Mean6.5
Median Absolute Deviation (MAD)2.5
Skewness2.8954507
Sum78
Variance77.181818
MonotonicityNot monotonic
2025-03-20T14:01:11.920609image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=9)
ValueCountFrequency (%)
1 3
 
8.8%
5 2
 
5.9%
4 1
 
2.9%
7 1
 
2.9%
10 1
 
2.9%
2 1
 
2.9%
33 1
 
2.9%
3 1
 
2.9%
6 1
 
2.9%
(Missing) 22
64.7%
ValueCountFrequency (%)
1 3
8.8%
2 1
 
2.9%
3 1
 
2.9%
4 1
 
2.9%
5 2
5.9%
6 1
 
2.9%
7 1
 
2.9%
10 1
 
2.9%
33 1
 
2.9%
ValueCountFrequency (%)
33 1
 
2.9%
10 1
 
2.9%
7 1
 
2.9%
6 1
 
2.9%
5 2
5.9%
4 1
 
2.9%
3 1
 
2.9%
2 1
 
2.9%
1 3
8.8%

Country_France
Categorical

High correlation  Missing  Uniform 

Distinct2
Distinct (%)100.0%
Missing32
Missing (%)94.1%
Memory size544.0 B
1.0
7.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters6
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)100.0%

Sample

1st row1.0
2nd row7.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
7.0 1
 
2.9%
(Missing) 32
94.1%

Length

2025-03-20T14:01:12.232901image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:12.504158image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
50.0%
7.0 1
50.0%

Most occurring characters

ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
1 1
16.7%
7 1
16.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
1 1
16.7%
7 1
16.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
1 1
16.7%
7 1
16.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
1 1
16.7%
7 1
16.7%

Country_Algeria
Real number (ℝ)

High correlation  Missing 

Distinct7
Distinct (%)70.0%
Missing24
Missing (%)70.6%
Infinite0
Infinite (%)0.0%
Mean6.7
Minimum1
Maximum13
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:12.752505image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q12.75
median8
Q39.75
95-th percentile11.65
Maximum13
Range12
Interquartile range (IQR)7

Descriptive statistics

Standard deviation4.2439499
Coefficient of variation (CV)0.63342536
Kurtosis-1.327882
Mean6.7
Median Absolute Deviation (MAD)2.5
Skewness-0.24137129
Sum67
Variance18.011111
MonotonicityNot monotonic
2025-03-20T14:01:13.086702image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=7)
ValueCountFrequency (%)
10 2
 
5.9%
1 2
 
5.9%
9 2
 
5.9%
5 1
 
2.9%
7 1
 
2.9%
2 1
 
2.9%
13 1
 
2.9%
(Missing) 24
70.6%
ValueCountFrequency (%)
1 2
5.9%
2 1
2.9%
5 1
2.9%
7 1
2.9%
9 2
5.9%
10 2
5.9%
13 1
2.9%
ValueCountFrequency (%)
13 1
2.9%
10 2
5.9%
9 2
5.9%
7 1
2.9%
5 1
2.9%
2 1
2.9%
1 2
5.9%

Transport_Slow ground vehicle
Real number (ℝ)

High correlation  Missing 

Distinct6
Distinct (%)66.7%
Missing25
Missing (%)73.5%
Infinite0
Infinite (%)0.0%
Mean4.1111111
Minimum1
Maximum11
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:13.374971image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q12
median3
Q35
95-th percentile9.4
Maximum11
Range10
Interquartile range (IQR)3

Descriptive statistics

Standard deviation3.29562
Coefficient of variation (CV)0.80163729
Kurtosis1.2225643
Mean4.1111111
Median Absolute Deviation (MAD)2
Skewness1.2213817
Sum37
Variance10.861111
MonotonicityNot monotonic
2025-03-20T14:01:13.655237image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=6)
ValueCountFrequency (%)
2 2
 
5.9%
5 2
 
5.9%
1 2
 
5.9%
3 1
 
2.9%
7 1
 
2.9%
11 1
 
2.9%
(Missing) 25
73.5%
ValueCountFrequency (%)
1 2
5.9%
2 2
5.9%
3 1
2.9%
5 2
5.9%
7 1
2.9%
11 1
2.9%
ValueCountFrequency (%)
11 1
2.9%
7 1
2.9%
5 2
5.9%
3 1
2.9%
2 2
5.9%
1 2
5.9%

Transport_Boat
Real number (ℝ)

High correlation  Missing 

Distinct11
Distinct (%)45.8%
Missing10
Missing (%)29.4%
Infinite0
Infinite (%)0.0%
Mean6.375
Minimum1
Maximum24
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:13.922486image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q11
median5.5
Q39
95-th percentile17
Maximum24
Range23
Interquartile range (IQR)8

Descriptive statistics

Standard deviation6.1135096
Coefficient of variation (CV)0.9589819
Kurtosis1.809148
Mean6.375
Median Absolute Deviation (MAD)4
Skewness1.3950848
Sum153
Variance37.375
MonotonicityNot monotonic
2025-03-20T14:01:14.233798image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=11)
ValueCountFrequency (%)
1 7
20.6%
9 3
 
8.8%
6 3
 
8.8%
2 3
 
8.8%
17 2
 
5.9%
24 1
 
2.9%
10 1
 
2.9%
4 1
 
2.9%
7 1
 
2.9%
11 1
 
2.9%
(Missing) 10
29.4%
ValueCountFrequency (%)
1 7
20.6%
2 3
8.8%
4 1
 
2.9%
5 1
 
2.9%
6 3
8.8%
7 1
 
2.9%
9 3
8.8%
10 1
 
2.9%
11 1
 
2.9%
17 2
 
5.9%
ValueCountFrequency (%)
24 1
 
2.9%
17 2
5.9%
11 1
 
2.9%
10 1
 
2.9%
9 3
8.8%
7 1
 
2.9%
6 3
8.8%
5 1
 
2.9%
4 1
 
2.9%
2 3
8.8%

Difficulty_Climate
Categorical

High correlation  Missing 

Distinct4
Distinct (%)66.7%
Missing28
Missing (%)82.4%
Memory size544.0 B
3.0
1.0
5.0
6.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters18
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique3 ?
Unique (%)50.0%

Sample

1st row3.0
2nd row3.0
3rd row1.0
4th row5.0
5th row3.0

Common Values

ValueCountFrequency (%)
3.0 3
 
8.8%
1.0 1
 
2.9%
5.0 1
 
2.9%
6.0 1
 
2.9%
(Missing) 28
82.4%

Length

2025-03-20T14:01:14.548072image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:14.844002image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
3.0 3
50.0%
1.0 1
 
16.7%
5.0 1
 
16.7%
6.0 1
 
16.7%

Most occurring characters

ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
3 3
16.7%
1 1
 
5.6%
5 1
 
5.6%
6 1
 
5.6%

Most occurring categories

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
3 3
16.7%
1 1
 
5.6%
5 1
 
5.6%
6 1
 
5.6%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
3 3
16.7%
1 1
 
5.6%
5 1
 
5.6%
6 1
 
5.6%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
3 3
16.7%
1 1
 
5.6%
5 1
 
5.6%
6 1
 
5.6%

Difficulty_Transport
Categorical

High correlation  Missing 

Distinct3
Distinct (%)60.0%
Missing29
Missing (%)85.3%
Memory size544.0 B
1.0
9.0
3.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters15
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)20.0%

Sample

1st row1.0
2nd row3.0
3rd row9.0
4th row9.0
5th row1.0

Common Values

ValueCountFrequency (%)
1.0 2
 
5.9%
9.0 2
 
5.9%
3.0 1
 
2.9%
(Missing) 29
85.3%

Length

2025-03-20T14:01:15.157486image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:15.426423image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 2
40.0%
9.0 2
40.0%
3.0 1
20.0%

Most occurring characters

ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 2
 
13.3%
9 2
 
13.3%
3 1
 
6.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 2
 
13.3%
9 2
 
13.3%
3 1
 
6.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 2
 
13.3%
9 2
 
13.3%
3 1
 
6.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 2
 
13.3%
9 2
 
13.3%
3 1
 
6.7%

Difficulty_Nature
Categorical

High correlation  Missing 

Distinct4
Distinct (%)66.7%
Missing28
Missing (%)82.4%
Memory size544.0 B
1.0
2.0
3.0
8.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters18
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)33.3%

Sample

1st row3.0
2nd row1.0
3rd row2.0
4th row1.0
5th row2.0

Common Values

ValueCountFrequency (%)
1.0 2
 
5.9%
2.0 2
 
5.9%
3.0 1
 
2.9%
8.0 1
 
2.9%
(Missing) 28
82.4%

Length

2025-03-20T14:01:15.758216image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:16.061216image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 2
33.3%
2.0 2
33.3%
3.0 1
16.7%
8.0 1
16.7%

Most occurring characters

ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 2
 
11.1%
2 2
 
11.1%
3 1
 
5.6%
8 1
 
5.6%

Most occurring categories

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 2
 
11.1%
2 2
 
11.1%
3 1
 
5.6%
8 1
 
5.6%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 2
 
11.1%
2 2
 
11.1%
3 1
 
5.6%
8 1
 
5.6%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 2
 
11.1%
2 2
 
11.1%
3 1
 
5.6%
8 1
 
5.6%

Country_Tunisia
Categorical

High correlation  Missing  Uniform 

Distinct3
Distinct (%)100.0%
Missing31
Missing (%)91.2%
Memory size544.0 B
8.0
3.0
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters9
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique3 ?
Unique (%)100.0%

Sample

1st row8.0
2nd row3.0
3rd row1.0

Common Values

ValueCountFrequency (%)
8.0 1
 
2.9%
3.0 1
 
2.9%
1.0 1
 
2.9%
(Missing) 31
91.2%

Length

2025-03-20T14:01:16.366725image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:16.654250image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
8.0 1
33.3%
3.0 1
33.3%
1.0 1
33.3%

Most occurring characters

ValueCountFrequency (%)
. 3
33.3%
0 3
33.3%
8 1
 
11.1%
3 1
 
11.1%
1 1
 
11.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 3
33.3%
0 3
33.3%
8 1
 
11.1%
3 1
 
11.1%
1 1
 
11.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 3
33.3%
0 3
33.3%
8 1
 
11.1%
3 1
 
11.1%
1 1
 
11.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 3
33.3%
0 3
33.3%
8 1
 
11.1%
3 1
 
11.1%
1 1
 
11.1%

Country_Morocco
Real number (ℝ)

High correlation  Missing 

Distinct6
Distinct (%)85.7%
Missing27
Missing (%)79.4%
Infinite0
Infinite (%)0.0%
Mean6.1428571
Minimum1
Maximum22
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:16.928295image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q11.5
median4
Q36.5
95-th percentile17.8
Maximum22
Range21
Interquartile range (IQR)5

Descriptive statistics

Standard deviation7.4258237
Coefficient of variation (CV)1.208855
Kurtosis4.5687455
Mean6.1428571
Median Absolute Deviation (MAD)3
Skewness2.0737045
Sum43
Variance55.142857
MonotonicityNot monotonic
2025-03-20T14:01:17.217166image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=6)
ValueCountFrequency (%)
1 2
 
5.9%
4 1
 
2.9%
8 1
 
2.9%
22 1
 
2.9%
5 1
 
2.9%
2 1
 
2.9%
(Missing) 27
79.4%
ValueCountFrequency (%)
1 2
5.9%
2 1
2.9%
4 1
2.9%
5 1
2.9%
8 1
2.9%
22 1
2.9%
ValueCountFrequency (%)
22 1
2.9%
8 1
2.9%
5 1
2.9%
4 1
2.9%
2 1
2.9%
1 2
5.9%

Country_Libya
Real number (ℝ)

High correlation  Missing 

Distinct6
Distinct (%)85.7%
Missing27
Missing (%)79.4%
Infinite0
Infinite (%)0.0%
Mean4.1428571
Minimum1
Maximum12
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:17.475800image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q11.5
median3
Q35
95-th percentile10.2
Maximum12
Range11
Interquartile range (IQR)3.5

Descriptive statistics

Standard deviation3.8913824
Coefficient of variation (CV)0.9392992
Kurtosis2.8239231
Mean4.1428571
Median Absolute Deviation (MAD)2
Skewness1.6553268
Sum29
Variance15.142857
MonotonicityNot monotonic
2025-03-20T14:01:17.790678image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=6)
ValueCountFrequency (%)
1 2
 
5.9%
2 1
 
2.9%
3 1
 
2.9%
6 1
 
2.9%
4 1
 
2.9%
12 1
 
2.9%
(Missing) 27
79.4%
ValueCountFrequency (%)
1 2
5.9%
2 1
2.9%
3 1
2.9%
4 1
2.9%
6 1
2.9%
12 1
2.9%
ValueCountFrequency (%)
12 1
2.9%
6 1
2.9%
4 1
2.9%
3 1
2.9%
2 1
2.9%
1 2
5.9%

Transport_Caravan
Real number (ℝ)

High correlation  Missing 

Distinct8
Distinct (%)88.9%
Missing25
Missing (%)73.5%
Infinite0
Infinite (%)0.0%
Mean14
Minimum1
Maximum70
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:18.065060image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q12
median4
Q38
95-th percentile54.4
Maximum70
Range69
Interquartile range (IQR)6

Descriptive statistics

Standard deviation22.989128
Coefficient of variation (CV)1.6420806
Kurtosis5.0432986
Mean14
Median Absolute Deviation (MAD)3
Skewness2.2665538
Sum126
Variance528.5
MonotonicityNot monotonic
2025-03-20T14:01:18.435507image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=8)
ValueCountFrequency (%)
1 2
 
5.9%
2 1
 
2.9%
70 1
 
2.9%
8 1
 
2.9%
31 1
 
2.9%
4 1
 
2.9%
6 1
 
2.9%
3 1
 
2.9%
(Missing) 25
73.5%
ValueCountFrequency (%)
1 2
5.9%
2 1
2.9%
3 1
2.9%
4 1
2.9%
6 1
2.9%
8 1
2.9%
31 1
2.9%
70 1
2.9%
ValueCountFrequency (%)
70 1
2.9%
31 1
2.9%
8 1
2.9%
6 1
2.9%
4 1
2.9%
3 1
2.9%
2 1
2.9%
1 2
5.9%

Transport_Camelid
Real number (ℝ)

High correlation  Missing 

Distinct9
Distinct (%)75.0%
Missing22
Missing (%)64.7%
Infinite0
Infinite (%)0.0%
Mean9.3333333
Minimum1
Maximum43
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:18.730559image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q11.75
median7.5
Q39.75
95-th percentile27.6
Maximum43
Range42
Interquartile range (IQR)8

Descriptive statistics

Standard deviation11.562741
Coefficient of variation (CV)1.2388651
Kurtosis7.4618806
Mean9.3333333
Median Absolute Deviation (MAD)5
Skewness2.5448766
Sum112
Variance133.69697
MonotonicityNot monotonic
2025-03-20T14:01:19.057706image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=9)
ValueCountFrequency (%)
1 3
 
8.8%
9 2
 
5.9%
4 1
 
2.9%
2 1
 
2.9%
15 1
 
2.9%
8 1
 
2.9%
7 1
 
2.9%
43 1
 
2.9%
12 1
 
2.9%
(Missing) 22
64.7%
ValueCountFrequency (%)
1 3
8.8%
2 1
 
2.9%
4 1
 
2.9%
7 1
 
2.9%
8 1
 
2.9%
9 2
5.9%
12 1
 
2.9%
15 1
 
2.9%
43 1
 
2.9%
ValueCountFrequency (%)
43 1
 
2.9%
15 1
 
2.9%
12 1
 
2.9%
9 2
5.9%
8 1
 
2.9%
7 1
 
2.9%
4 1
 
2.9%
2 1
 
2.9%
1 3
8.8%

Country_United Kingdom
Categorical

High correlation  Missing 

Distinct2
Distinct (%)33.3%
Missing28
Missing (%)82.4%
Memory size544.0 B
1.0
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters18
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)16.7%

Sample

1st row1.0
2nd row1.0
3rd row1.0
4th row1.0
5th row1.0

Common Values

ValueCountFrequency (%)
1.0 5
 
14.7%
2.0 1
 
2.9%
(Missing) 28
82.4%

Length

2025-03-20T14:01:19.367446image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:19.630105image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 5
83.3%
2.0 1
 
16.7%

Most occurring characters

ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 5
27.8%
2 1
 
5.6%

Most occurring categories

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 5
27.8%
2 1
 
5.6%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 5
27.8%
2 1
 
5.6%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 5
27.8%
2 1
 
5.6%

Country_Nigeria
Categorical

High correlation  Missing 

Distinct3
Distinct (%)60.0%
Missing29
Missing (%)85.3%
Memory size544.0 B
1.0
2.0
3.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters15
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)20.0%

Sample

1st row1.0
2nd row3.0
3rd row2.0
4th row2.0
5th row1.0

Common Values

ValueCountFrequency (%)
1.0 2
 
5.9%
2.0 2
 
5.9%
3.0 1
 
2.9%
(Missing) 29
85.3%

Length

2025-03-20T14:01:19.926831image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:20.238998image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 2
40.0%
2.0 2
40.0%
3.0 1
20.0%

Most occurring characters

ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 2
 
13.3%
2 2
 
13.3%
3 1
 
6.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 2
 
13.3%
2 2
 
13.3%
3 1
 
6.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 2
 
13.3%
2 2
 
13.3%
3 1
 
6.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 2
 
13.3%
2 2
 
13.3%
3 1
 
6.7%

Country_Niger
Categorical

High correlation  Missing  Uniform 

Distinct3
Distinct (%)100.0%
Missing31
Missing (%)91.2%
Memory size544.0 B
24.0
2.0
3.0

Length

Max length4
Median length3
Mean length3.3333333
Min length3

Characters and Unicode

Total characters10
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique3 ?
Unique (%)100.0%

Sample

1st row24.0
2nd row2.0
3rd row3.0

Common Values

ValueCountFrequency (%)
24.0 1
 
2.9%
2.0 1
 
2.9%
3.0 1
 
2.9%
(Missing) 31
91.2%

Length

2025-03-20T14:01:20.550937image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:20.823959image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
24.0 1
33.3%
2.0 1
33.3%
3.0 1
33.3%

Most occurring characters

ValueCountFrequency (%)
. 3
30.0%
0 3
30.0%
2 2
20.0%
4 1
 
10.0%
3 1
 
10.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 10
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 3
30.0%
0 3
30.0%
2 2
20.0%
4 1
 
10.0%
3 1
 
10.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 10
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 3
30.0%
0 3
30.0%
2 2
20.0%
4 1
 
10.0%
3 1
 
10.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 10
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 3
30.0%
0 3
30.0%
2 2
20.0%
4 1
 
10.0%
3 1
 
10.0%

Difficulty_Humans
Categorical

High correlation  Missing 

Distinct3
Distinct (%)75.0%
Missing30
Missing (%)88.2%
Memory size544.0 B
6.0
1.0
4.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters12
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)50.0%

Sample

1st row1.0
2nd row6.0
3rd row6.0
4th row4.0

Common Values

ValueCountFrequency (%)
6.0 2
 
5.9%
1.0 1
 
2.9%
4.0 1
 
2.9%
(Missing) 30
88.2%

Length

2025-03-20T14:01:21.117979image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:21.386131image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
6.0 2
50.0%
1.0 1
25.0%
4.0 1
25.0%

Most occurring characters

ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
6 2
16.7%
1 1
 
8.3%
4 1
 
8.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
6 2
16.7%
1 1
 
8.3%
4 1
 
8.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
6 2
16.7%
1 1
 
8.3%
4 1
 
8.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
6 2
16.7%
1 1
 
8.3%
4 1
 
8.3%

Country_Spain
Categorical

High correlation  Missing 

Distinct2
Distinct (%)40.0%
Missing29
Missing (%)85.3%
Memory size544.0 B
1.0
9.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters15
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)20.0%

Sample

1st row1.0
2nd row1.0
3rd row1.0
4th row1.0
5th row9.0

Common Values

ValueCountFrequency (%)
1.0 4
 
11.8%
9.0 1
 
2.9%
(Missing) 29
85.3%

Length

2025-03-20T14:01:21.700097image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:21.951610image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 4
80.0%
9.0 1
 
20.0%

Most occurring characters

ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 4
26.7%
9 1
 
6.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 4
26.7%
9 1
 
6.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 4
26.7%
9 1
 
6.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 4
26.7%
9 1
 
6.7%

Country_Gibraltar
Categorical

Constant  Missing 

Distinct1
Distinct (%)33.3%
Missing31
Missing (%)91.2%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters9
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row1.0

Common Values

ValueCountFrequency (%)
1.0 3
 
8.8%
(Missing) 31
91.2%

Length

2025-03-20T14:01:22.241479image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:22.500462image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 3
100.0%

Most occurring characters

ValueCountFrequency (%)
1 3
33.3%
. 3
33.3%
0 3
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 3
33.3%
. 3
33.3%
0 3
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 3
33.3%
. 3
33.3%
0 3
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 3
33.3%
. 3
33.3%
0 3
33.3%

Transport_Walking
Real number (ℝ)

High correlation  Missing 

Distinct9
Distinct (%)64.3%
Missing20
Missing (%)58.8%
Infinite0
Infinite (%)0.0%
Mean7.7857143
Minimum1
Maximum40
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size544.0 B
2025-03-20T14:01:22.744619image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q14.25
median6
Q36.75
95-th percentile21.15
Maximum40
Range39
Interquartile range (IQR)2.5

Descriptive statistics

Standard deviation9.6808977
Coefficient of variation (CV)1.2434181
Kurtosis11.245328
Mean7.7857143
Median Absolute Deviation (MAD)1.5
Skewness3.2173041
Sum109
Variance93.71978
MonotonicityNot monotonic
2025-03-20T14:01:23.094625image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram with fixed size bins (bins=9)
ValueCountFrequency (%)
6 4
 
11.8%
1 2
 
5.9%
5 2
 
5.9%
7 1
 
2.9%
2 1
 
2.9%
11 1
 
2.9%
9 1
 
2.9%
40 1
 
2.9%
4 1
 
2.9%
(Missing) 20
58.8%
ValueCountFrequency (%)
1 2
5.9%
2 1
 
2.9%
4 1
 
2.9%
5 2
5.9%
6 4
11.8%
7 1
 
2.9%
9 1
 
2.9%
11 1
 
2.9%
40 1
 
2.9%
ValueCountFrequency (%)
40 1
 
2.9%
11 1
 
2.9%
9 1
 
2.9%
7 1
 
2.9%
6 4
11.8%
5 2
5.9%
4 1
 
2.9%
2 1
 
2.9%
1 2
5.9%

Difficulty_Fatigue/Illness
Categorical

High correlation  Missing 

Distinct3
Distinct (%)75.0%
Missing30
Missing (%)88.2%
Memory size544.0 B
1.0
2.0
8.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters12
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)50.0%

Sample

1st row2.0
2nd row1.0
3rd row1.0
4th row8.0

Common Values

ValueCountFrequency (%)
1.0 2
 
5.9%
2.0 1
 
2.9%
8.0 1
 
2.9%
(Missing) 30
88.2%

Length

2025-03-20T14:01:23.457300image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:23.878395image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 2
50.0%
2.0 1
25.0%
8.0 1
25.0%

Most occurring characters

ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
1 2
16.7%
2 1
 
8.3%
8 1
 
8.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
1 2
16.7%
2 1
 
8.3%
8 1
 
8.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
1 2
16.7%
2 1
 
8.3%
8 1
 
8.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
1 2
16.7%
2 1
 
8.3%
8 1
 
8.3%

Difficulty_Thirst/Hunger
Categorical

High correlation  Missing 

Distinct3
Distinct (%)60.0%
Missing29
Missing (%)85.3%
Memory size544.0 B
1.0
2.0
3.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters15
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)40.0%

Sample

1st row1.0
2nd row1.0
3rd row1.0
4th row2.0
5th row3.0

Common Values

ValueCountFrequency (%)
1.0 3
 
8.8%
2.0 1
 
2.9%
3.0 1
 
2.9%
(Missing) 29
85.3%

Length

2025-03-20T14:01:24.350057image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:24.605710image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 3
60.0%
2.0 1
 
20.0%
3.0 1
 
20.0%

Most occurring characters

ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 3
20.0%
2 1
 
6.7%
3 1
 
6.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 3
20.0%
2 1
 
6.7%
3 1
 
6.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 3
20.0%
2 1
 
6.7%
3 1
 
6.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 15
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 5
33.3%
0 5
33.3%
1 3
20.0%
2 1
 
6.7%
3 1
 
6.7%

Country_Sierra Leone
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row2.0

Common Values

ValueCountFrequency (%)
2.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:24.961102image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:25.224207image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
2.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Guinea
Categorical

High correlation  Missing 

Distinct3
Distinct (%)60.0%
Missing29
Missing (%)85.3%
Memory size544.0 B
3.0
6.0
11.0

Length

Max length4
Median length3
Mean length3.2
Min length3

Characters and Unicode

Total characters16
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)40.0%

Sample

1st row6.0
2nd row3.0
3rd row11.0
4th row3.0
5th row3.0

Common Values

ValueCountFrequency (%)
3.0 3
 
8.8%
6.0 1
 
2.9%
11.0 1
 
2.9%
(Missing) 29
85.3%

Length

2025-03-20T14:01:25.667710image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:25.982430image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
3.0 3
60.0%
6.0 1
 
20.0%
11.0 1
 
20.0%

Most occurring characters

ValueCountFrequency (%)
. 5
31.2%
0 5
31.2%
3 3
18.8%
1 2
 
12.5%
6 1
 
6.2%

Most occurring categories

ValueCountFrequency (%)
(unknown) 16
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 5
31.2%
0 5
31.2%
3 3
18.8%
1 2
 
12.5%
6 1
 
6.2%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 16
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 5
31.2%
0 5
31.2%
3 3
18.8%
1 2
 
12.5%
6 1
 
6.2%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 16
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 5
31.2%
0 5
31.2%
3 3
18.8%
1 2
 
12.5%
6 1
 
6.2%

Country_Mali
Categorical

High correlation  Missing 

Distinct4
Distinct (%)80.0%
Missing29
Missing (%)85.3%
Memory size544.0 B
3.0
18.0
5.0
2.0

Length

Max length4
Median length3
Mean length3.2
Min length3

Characters and Unicode

Total characters16
Distinct characters7
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique3 ?
Unique (%)60.0%

Sample

1st row18.0
2nd row5.0
3rd row3.0
4th row3.0
5th row2.0

Common Values

ValueCountFrequency (%)
3.0 2
 
5.9%
18.0 1
 
2.9%
5.0 1
 
2.9%
2.0 1
 
2.9%
(Missing) 29
85.3%

Length

2025-03-20T14:01:26.289250image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:26.666975image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
3.0 2
40.0%
18.0 1
20.0%
5.0 1
20.0%
2.0 1
20.0%

Most occurring characters

ValueCountFrequency (%)
. 5
31.2%
0 5
31.2%
3 2
 
12.5%
1 1
 
6.2%
8 1
 
6.2%
5 1
 
6.2%
2 1
 
6.2%

Most occurring categories

ValueCountFrequency (%)
(unknown) 16
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 5
31.2%
0 5
31.2%
3 2
 
12.5%
1 1
 
6.2%
8 1
 
6.2%
5 1
 
6.2%
2 1
 
6.2%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 16
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 5
31.2%
0 5
31.2%
3 2
 
12.5%
1 1
 
6.2%
8 1
 
6.2%
5 1
 
6.2%
2 1
 
6.2%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 16
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 5
31.2%
0 5
31.2%
3 2
 
12.5%
1 1
 
6.2%
8 1
 
6.2%
5 1
 
6.2%
2 1
 
6.2%

Country_Côte d'Ivoire
Categorical

High correlation  Missing  Uniform 

Distinct2
Distinct (%)100.0%
Missing32
Missing (%)94.1%
Memory size544.0 B
1.0
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters6
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)100.0%

Sample

1st row1.0
2nd row2.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
2.0 1
 
2.9%
(Missing) 32
94.1%

Length

2025-03-20T14:01:26.974847image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:27.310939image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
50.0%
2.0 1
50.0%

Most occurring characters

ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
1 1
16.7%
2 1
16.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
1 1
16.7%
2 1
16.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
1 1
16.7%
2 1
16.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
1 1
16.7%
2 1
16.7%

Country_Senegal
Categorical

High correlation  Missing  Uniform 

Distinct3
Distinct (%)100.0%
Missing31
Missing (%)91.2%
Memory size544.0 B
1.0
4.0
5.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters9
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique3 ?
Unique (%)100.0%

Sample

1st row1.0
2nd row4.0
3rd row5.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
4.0 1
 
2.9%
5.0 1
 
2.9%
(Missing) 31
91.2%

Length

2025-03-20T14:01:27.687813image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:28.055021image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
33.3%
4.0 1
33.3%
5.0 1
33.3%

Most occurring characters

ValueCountFrequency (%)
. 3
33.3%
0 3
33.3%
1 1
 
11.1%
4 1
 
11.1%
5 1
 
11.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 3
33.3%
0 3
33.3%
1 1
 
11.1%
4 1
 
11.1%
5 1
 
11.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 3
33.3%
0 3
33.3%
1 1
 
11.1%
4 1
 
11.1%
5 1
 
11.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 3
33.3%
0 3
33.3%
1 1
 
11.1%
4 1
 
11.1%
5 1
 
11.1%

Country_Egypt
Categorical

High correlation  Missing 

Distinct2
Distinct (%)50.0%
Missing30
Missing (%)88.2%
Memory size544.0 B
1.0
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters12
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)25.0%

Sample

1st row1.0
2nd row2.0
3rd row1.0
4th row1.0

Common Values

ValueCountFrequency (%)
1.0 3
 
8.8%
2.0 1
 
2.9%
(Missing) 30
88.2%

Length

2025-03-20T14:01:28.534404image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:29.010738image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 3
75.0%
2.0 1
 
25.0%

Most occurring characters

ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
1 3
25.0%
2 1
 
8.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
1 3
25.0%
2 1
 
8.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
1 3
25.0%
2 1
 
8.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
1 3
25.0%
2 1
 
8.3%

Country_Kenya
Categorical

High correlation  Missing  Uniform 

Distinct2
Distinct (%)100.0%
Missing32
Missing (%)94.1%
Memory size544.0 B
3.0
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters6
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)100.0%

Sample

1st row3.0
2nd row2.0

Common Values

ValueCountFrequency (%)
3.0 1
 
2.9%
2.0 1
 
2.9%
(Missing) 32
94.1%

Length

2025-03-20T14:01:29.530967image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:29.861699image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
3.0 1
50.0%
2.0 1
50.0%

Most occurring characters

ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
3 1
16.7%
2 1
16.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
3 1
16.7%
2 1
16.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
3 1
16.7%
2 1
16.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
3 1
16.7%
2 1
16.7%

Country_Tanzania
Categorical

High correlation  Missing 

Distinct4
Distinct (%)66.7%
Missing28
Missing (%)82.4%
Memory size544.0 B
1.0
3.0
4.0
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters18
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)33.3%

Sample

1st row1.0
2nd row1.0
3rd row3.0
4th row3.0
5th row4.0

Common Values

ValueCountFrequency (%)
1.0 2
 
5.9%
3.0 2
 
5.9%
4.0 1
 
2.9%
2.0 1
 
2.9%
(Missing) 28
82.4%

Length

2025-03-20T14:01:30.309692image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:30.686097image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 2
33.3%
3.0 2
33.3%
4.0 1
16.7%
2.0 1
16.7%

Most occurring characters

ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 2
 
11.1%
3 2
 
11.1%
4 1
 
5.6%
2 1
 
5.6%

Most occurring categories

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 2
 
11.1%
3 2
 
11.1%
4 1
 
5.6%
2 1
 
5.6%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 2
 
11.1%
3 2
 
11.1%
4 1
 
5.6%
2 1
 
5.6%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 18
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 6
33.3%
0 6
33.3%
1 2
 
11.1%
3 2
 
11.1%
4 1
 
5.6%
2 1
 
5.6%

Country_Mozambique
Categorical

High correlation  Missing 

Distinct4
Distinct (%)57.1%
Missing27
Missing (%)79.4%
Memory size544.0 B
3.0
2.0
6.0
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters21
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)28.6%

Sample

1st row3.0
2nd row6.0
3rd row3.0
4th row2.0
5th row3.0

Common Values

ValueCountFrequency (%)
3.0 3
 
8.8%
2.0 2
 
5.9%
6.0 1
 
2.9%
1.0 1
 
2.9%
(Missing) 27
79.4%

Length

2025-03-20T14:01:31.104239image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:31.445532image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
3.0 3
42.9%
2.0 2
28.6%
6.0 1
 
14.3%
1.0 1
 
14.3%

Most occurring characters

ValueCountFrequency (%)
. 7
33.3%
0 7
33.3%
3 3
14.3%
2 2
 
9.5%
6 1
 
4.8%
1 1
 
4.8%

Most occurring categories

ValueCountFrequency (%)
(unknown) 21
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 7
33.3%
0 7
33.3%
3 3
14.3%
2 2
 
9.5%
6 1
 
4.8%
1 1
 
4.8%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 21
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 7
33.3%
0 7
33.3%
3 3
14.3%
2 2
 
9.5%
6 1
 
4.8%
1 1
 
4.8%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 21
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 7
33.3%
0 7
33.3%
3 3
14.3%
2 2
 
9.5%
6 1
 
4.8%
1 1
 
4.8%

Country_Democratic Republic of the Congo
Categorical

High correlation  Missing  Uniform 

Distinct2
Distinct (%)100.0%
Missing32
Missing (%)94.1%
Memory size544.0 B
8.0
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters6
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)100.0%

Sample

1st row8.0
2nd row2.0

Common Values

ValueCountFrequency (%)
8.0 1
 
2.9%
2.0 1
 
2.9%
(Missing) 32
94.1%

Length

2025-03-20T14:01:31.828029image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:32.142420image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
8.0 1
50.0%
2.0 1
50.0%

Most occurring characters

ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
8 1
16.7%
2 1
16.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
8 1
16.7%
2 1
16.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
8 1
16.7%
2 1
16.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
8 1
16.7%
2 1
16.7%

Country_Zambia
Categorical

High correlation  Missing  Uniform 

Distinct2
Distinct (%)100.0%
Missing32
Missing (%)94.1%
Memory size544.0 B
2.0
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters6
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)100.0%

Sample

1st row2.0
2nd row1.0

Common Values

ValueCountFrequency (%)
2.0 1
 
2.9%
1.0 1
 
2.9%
(Missing) 32
94.1%

Length

2025-03-20T14:01:32.510782image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:32.794979image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
2.0 1
50.0%
1.0 1
50.0%

Most occurring characters

ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
2 1
16.7%
1 1
16.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
2 1
16.7%
1 1
16.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
2 1
16.7%
1 1
16.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 2
33.3%
0 2
33.3%
2 1
16.7%
1 1
16.7%

Country_Botswana
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
3.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row3.0

Common Values

ValueCountFrequency (%)
3.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:33.092725image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:33.443403image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
3.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
3 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
3 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
3 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
3 1
33.3%
. 1
33.3%
0 1
33.3%

Country_South Africa
Categorical

High correlation  Missing 

Distinct3
Distinct (%)75.0%
Missing30
Missing (%)88.2%
Memory size544.0 B
4.0
3.0
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters12
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)50.0%

Sample

1st row3.0
2nd row1.0
3rd row4.0
4th row4.0

Common Values

ValueCountFrequency (%)
4.0 2
 
5.9%
3.0 1
 
2.9%
1.0 1
 
2.9%
(Missing) 30
88.2%

Length

2025-03-20T14:01:33.962514image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:34.351079image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
4.0 2
50.0%
3.0 1
25.0%
1.0 1
25.0%

Most occurring characters

ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
4 2
16.7%
3 1
 
8.3%
1 1
 
8.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
4 2
16.7%
3 1
 
8.3%
1 1
 
8.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
4 2
16.7%
3 1
 
8.3%
1 1
 
8.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 12
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
. 4
33.3%
0 4
33.3%
4 2
16.7%
3 1
 
8.3%
1 1
 
8.3%

Country_Zimbabwe
Categorical

Constant  Missing 

Distinct1
Distinct (%)50.0%
Missing32
Missing (%)94.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters6
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0

Common Values

ValueCountFrequency (%)
1.0 2
 
5.9%
(Missing) 32
94.1%

Length

2025-03-20T14:01:35.069540image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:35.328969image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 2
100.0%

Most occurring characters

ValueCountFrequency (%)
1 2
33.3%
. 2
33.3%
0 2
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 2
33.3%
. 2
33.3%
0 2
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 2
33.3%
. 2
33.3%
0 2
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 6
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 2
33.3%
. 2
33.3%
0 2
33.3%

Country_Portugal
Categorical

Constant  Missing 

Distinct1
Distinct (%)33.3%
Missing31
Missing (%)91.2%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters9
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row1.0

Common Values

ValueCountFrequency (%)
1.0 3
 
8.8%
(Missing) 31
91.2%

Length

2025-03-20T14:01:35.627769image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:35.871584image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 3
100.0%

Most occurring characters

ValueCountFrequency (%)
1 3
33.3%
. 3
33.3%
0 3
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 3
33.3%
. 3
33.3%
0 3
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 3
33.3%
. 3
33.3%
0 3
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 9
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 3
33.3%
. 3
33.3%
0 3
33.3%

Country_Cape Verde
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row2.0

Common Values

ValueCountFrequency (%)
2.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:36.245952image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:36.484253image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
2.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%
Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:36.791663image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:37.235984image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_India
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row2.0

Common Values

ValueCountFrequency (%)
2.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:37.527745image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:37.775677image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
2.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Somalia
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:38.100117image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:38.357950image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Guinea-Bissau
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:38.674966image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:38.901224image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Malawi
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
6.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row6.0

Common Values

ValueCountFrequency (%)
6.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:39.350345image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:39.759253image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
6.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
6 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
6 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
6 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
6 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Mauritania
Categorical

High correlation  Missing  Uniform 

Distinct2
Distinct (%)100.0%
Missing32
Missing (%)94.1%
Memory size544.0 B
23.0
2.0

Length

Max length4
Median length3.5
Mean length3.5
Min length3

Characters and Unicode

Total characters7
Distinct characters4
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)100.0%

Sample

1st row23.0
2nd row2.0

Common Values

ValueCountFrequency (%)
23.0 1
 
2.9%
2.0 1
 
2.9%
(Missing) 32
94.1%

Length

2025-03-20T14:01:40.097315image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:40.462788image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
23.0 1
50.0%
2.0 1
50.0%

Most occurring characters

ValueCountFrequency (%)
2 2
28.6%
. 2
28.6%
0 2
28.6%
3 1
14.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 7
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
2 2
28.6%
. 2
28.6%
0 2
28.6%
3 1
14.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 7
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
2 2
28.6%
. 2
28.6%
0 2
28.6%
3 1
14.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 7
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
2 2
28.6%
. 2
28.6%
0 2
28.6%
3 1
14.3%

Country_Ghana
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:40.846980image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:41.082957image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Liberia
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:41.370798image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:41.620073image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_The Gambia
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:41.915526image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:42.154398image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Ethiopia
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
9.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row9.0

Common Values

ValueCountFrequency (%)
9.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:42.423752image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:42.669773image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
9.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
9 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
9 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
9 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
9 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Malta
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
6.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row6.0

Common Values

ValueCountFrequency (%)
6.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:42.952014image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:43.185181image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
6.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
6 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
6 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
6 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
6 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Gabon
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:43.476317image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:43.708245image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Germany
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:43.991737image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:44.214993image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Angola
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
2.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row2.0

Common Values

ValueCountFrequency (%)
2.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:44.492410image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:44.767033image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
2.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
2 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Namibia
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:45.051101image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:45.319760image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Sahrawi Arab Democratic Republic
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
4.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row4.0

Common Values

ValueCountFrequency (%)
4.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:45.619586image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:45.840066image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
4.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
4 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
4 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
4 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
4 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Sweden
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:46.133996image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:46.376584image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Ukraine
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:46.642026image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:46.889791image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Country_Russia
Categorical

Constant  Missing 

Distinct1
Distinct (%)100.0%
Missing33
Missing (%)97.1%
Memory size544.0 B
1.0

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters3
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)100.0%

Sample

1st row1.0

Common Values

ValueCountFrequency (%)
1.0 1
 
2.9%
(Missing) 33
97.1%

Length

2025-03-20T14:01:47.161279image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:47.396728image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
1.0 1
100.0%

Most occurring characters

ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 3
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 1
33.3%
. 1
33.3%
0 1
33.3%

Hierarchical_Cluster
Categorical

High correlation 

Distinct5
Distinct (%)14.7%
Missing0
Missing (%)0.0%
Memory size544.0 B
2
24 
3
1
 
2
4
 
1
5
 
1

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters34
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)5.9%

Sample

1st row1
2nd row1
3rd row2
4th row2
5th row2

Common Values

ValueCountFrequency (%)
2 24
70.6%
3 6
 
17.6%
1 2
 
5.9%
4 1
 
2.9%
5 1
 
2.9%

Length

2025-03-20T14:01:47.688675image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:47.992282image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
2 24
70.6%
3 6
 
17.6%
1 2
 
5.9%
4 1
 
2.9%
5 1
 
2.9%

Most occurring characters

ValueCountFrequency (%)
2 24
70.6%
3 6
 
17.6%
1 2
 
5.9%
4 1
 
2.9%
5 1
 
2.9%

Most occurring categories

ValueCountFrequency (%)
(unknown) 34
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
2 24
70.6%
3 6
 
17.6%
1 2
 
5.9%
4 1
 
2.9%
5 1
 
2.9%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 34
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
2 24
70.6%
3 6
 
17.6%
1 2
 
5.9%
4 1
 
2.9%
5 1
 
2.9%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 34
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
2 24
70.6%
3 6
 
17.6%
1 2
 
5.9%
4 1
 
2.9%
5 1
 
2.9%

KMeans_Cluster
Categorical

High correlation 

Distinct5
Distinct (%)14.7%
Missing0
Missing (%)0.0%
Memory size544.0 B
3
24 
0
1
4
 
1
2
 
1

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters34
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)5.9%

Sample

1st row4
2nd row3
3rd row3
4th row3
5th row3

Common Values

ValueCountFrequency (%)
3 24
70.6%
0 5
 
14.7%
1 3
 
8.8%
4 1
 
2.9%
2 1
 
2.9%

Length

2025-03-20T14:01:48.314343image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-03-20T14:01:48.598473image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
ValueCountFrequency (%)
3 24
70.6%
0 5
 
14.7%
1 3
 
8.8%
4 1
 
2.9%
2 1
 
2.9%

Most occurring characters

ValueCountFrequency (%)
3 24
70.6%
0 5
 
14.7%
1 3
 
8.8%
4 1
 
2.9%
2 1
 
2.9%

Most occurring categories

ValueCountFrequency (%)
(unknown) 34
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
3 24
70.6%
0 5
 
14.7%
1 3
 
8.8%
4 1
 
2.9%
2 1
 
2.9%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 34
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
3 24
70.6%
0 5
 
14.7%
1 3
 
8.8%
4 1
 
2.9%
2 1
 
2.9%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 34
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
3 24
70.6%
0 5
 
14.7%
1 3
 
8.8%
4 1
 
2.9%
2 1
 
2.9%

Interactions

2025-03-20T14:00:26.544250image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:42.769517image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:45.354884image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:48.027370image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:50.629152image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:53.530233image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:56.172760image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:58.724111image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:01.389510image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:04.423958image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:07.090810image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:09.933591image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:12.816518image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:15.404064image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:17.988057image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:20.685599image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:23.876307image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:26.693537image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:42.924553image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:45.505408image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:48.177659image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:50.769926image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:53.673518image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:56.314296image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:58.876783image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:01.557021image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:04.569681image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:07.252386image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:10.071649image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:12.961657image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:15.535071image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:18.149066image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:20.848758image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:24.028001image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:26.860789image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:43.081617image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:45.670441image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:48.333771image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:50.947491image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:53.831464image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:56.460375image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:59.050761image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:01.730536image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:04.724114image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:07.414324image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:10.223346image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:13.117914image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:15.680288image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:18.311755image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:21.021107image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:24.169648image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:27.022431image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:43.230830image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:45.846931image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:48.488239image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:51.097328image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:53.989005image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:56.610070image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:59.207190image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:02.221985image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:04.881560image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:07.575732image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:10.355520image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:13.259937image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:15.829348image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:18.473104image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:21.208534image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:24.313720image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:27.208410image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:43.386890image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:45.998628image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:48.638837image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:51.242353image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:54.146869image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:56.775990image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:59.355077image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:02.376041image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:05.043370image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:07.725650image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:10.509845image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:13.411080image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:16.021224image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:18.634879image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:21.360930image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:24.475768image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:27.408934image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:43.545827image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:46.164768image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:48.800145image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:51.398412image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:54.306593image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:56.933782image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:59.513799image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:02.550883image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:05.196006image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:07.989278image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:10.678456image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:13.553209image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:16.187034image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:18.788894image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:21.521228image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:24.629923image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:27.610832image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:43.692775image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:46.309463image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:48.945266image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:51.540359image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:54.448864image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:57.064759image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:59.648771image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:02.709686image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:05.339575image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:08.219070image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:10.829599image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:13.714359image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:16.340297image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:18.951116image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:21.689715image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:24.767559image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:27.794772image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:43.832161image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:46.463778image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:49.100304image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:51.679688image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:54.599015image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:57.201493image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:59.788377image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:02.873705image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:05.508361image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:08.398329image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:10.983752image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:13.859499image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:16.486901image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:19.112183image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:21.860706image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:24.919928image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:27.995035image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:43.994019image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:46.630775image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:49.262167image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:51.836455image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:54.760723image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:57.364763image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:59.948364image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:03.044736image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:05.662969image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:08.539565image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:11.117870image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:14.029772image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:16.636571image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:19.282299image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:22.389334image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:25.061232image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:28.192674image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:44.144785image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:46.787245image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:49.411891image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:52.354416image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:54.912923image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:57.512090image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:00.121569image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:03.204592image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:05.828545image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:08.699765image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:11.262005image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:14.189924image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:16.780662image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:19.463155image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:22.540860image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:25.214853image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:28.351394image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:44.295001image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:46.950436image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:49.562190image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:52.495759image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:55.072682image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:57.666091image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:00.277888image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:03.354812image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:06.001730image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:08.863887image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:11.402211image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:14.348074image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:16.913490image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:19.617558image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:22.710930image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:25.365723image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:28.567267image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:44.434563image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:47.095101image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:49.692555image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:52.641145image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:55.228741image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:57.803810image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:00.447482image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:03.488676image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:06.140327image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:08.998817image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:11.539690image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:14.502219image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:17.082394image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:19.769232image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:22.855183image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:25.534935image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:28.727066image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:44.571899image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:47.250215image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:49.842155image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:52.785349image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:55.377971image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:57.972181image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:00.621733image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:03.656413image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:06.300675image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:09.156572image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:11.699941image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:14.649239image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:17.217292image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:19.925207image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:23.021016image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:25.694295image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:28.896378image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:44.712273image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:47.389122image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:49.995725image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:52.925493image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:55.524691image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:58.115264image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:00.756677image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:03.804550image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:06.439971image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:09.291731image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:11.853086image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:14.789371image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:17.350302image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:20.062237image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:23.197790image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:25.856855image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:29.035785image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:44.880023image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:47.545861image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:50.147083image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:53.073011image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:55.670981image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:58.260657image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:00.912943image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:03.961030image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:06.608140image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:09.461160image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:12.332064image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:14.941627image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:17.491745image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:20.205155image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:23.354679image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:26.059453image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:29.219901image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:45.060224image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:47.712474image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:50.308451image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:53.228836image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:55.861350image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:58.420791image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:01.073664image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:04.124999image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:06.756521image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:09.635739image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:12.468194image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:15.099776image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:17.659288image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:20.348328image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:23.519279image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:26.236116image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:29.382723image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:45.201583image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:47.855141image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:50.453676image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:53.367601image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:56.008405image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T13:59:58.549986image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:01.230157image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:04.268344image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:06.933578image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:09.794464image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:12.632461image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:15.246798image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:17.815526image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:20.520048image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:23.699042image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
2025-03-20T14:00:26.382588image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/

Correlations

2025-03-20T14:01:49.030421image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Arrival AgeCountry_AlgeriaCountry_Côte d'IvoireCountry_Democratic Republic of the CongoCountry_EgyptCountry_FranceCountry_GuineaCountry_KenyaCountry_LibyaCountry_MaliCountry_MauritaniaCountry_MoroccoCountry_MozambiqueCountry_NigerCountry_NigeriaCountry_SenegalCountry_South AfricaCountry_SpainCountry_TanzaniaCountry_TunisiaCountry_United KingdomCountry_ZambiaDeparture AgeDifficulty_ClimateDifficulty_Fatigue/IllnessDifficulty_HumansDifficulty_NatureDifficulty_Thirst/HungerDifficulty_TransportHierarchical_ClusterKMeans_ClusterLanguageMoneyNationalityNumber of imagesNumber of stepsStart YearSteps with null coordinates in %Total distance traveled (km)Transport_BoatTransport_CamelidTransport_CaravanTransport_EquidTransport_Slow ground vehicleTransport_TrainTransport_WalkingTravel duration in days
Arrival Age1.000-0.4961.0001.0000.0001.0000.3331.0000.2060.5771.0000.1450.7751.0000.0001.0001.0000.0000.0001.0000.8661.0000.6430.0001.0001.0000.8660.8160.0000.1850.4060.0000.0940.0000.172-0.0730.077-0.0280.139-0.133-0.412-0.162-0.235-0.3970.0000.1330.900
Country_Algeria-0.4961.0000.0000.0000.0001.000NaN0.000-1.0001.000NaNNaN0.000NaNNaNNaN0.000NaN0.000NaNNaN0.000-0.4940.000NaN1.0000.000NaN0.0000.0000.5150.4330.2650.3160.0880.4950.006-0.583-0.355-0.2870.429-1.0000.5640.1890.000NaN-0.535
Country_Côte d'Ivoire1.0000.0001.000NaN0.0000.000NaN0.0000.000NaN0.000NaN0.0000.0000.0000.0000.000NaN0.0000.000NaN0.0001.0000.0000.0000.0000.0000.0000.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0000.000NaNNaN0.000NaNNaN1.000
Country_Democratic Republic of the Congo1.0000.000NaN1.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000NaNNaN0.000NaNNaN1.000NaNNaN0.000NaNNaN0.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0000.0000.0000.0000.000NaNNaN1.000
Country_Egypt0.0000.0000.0000.0001.0000.0000.000NaN1.0000.0000.0000.000NaN0.000NaN0.000NaNNaN1.0000.0001.0000.0000.0000.0000.0000.0000.0000.0000.0001.0001.0000.7070.0001.0001.0001.0000.7071.0001.0001.0000.0001.0001.000NaN1.0001.0001.000
Country_France1.0001.0000.0000.0000.0001.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000NaN0.0000.0000.0000.0001.000NaN0.000NaNNaN0.000NaN1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000NaN0.0000.0001.000NaN1.0000.0001.000
Country_Guinea0.333NaNNaN0.0000.0000.0001.0000.0000.0000.0000.0001.0000.0000.0000.000NaN0.0000.0000.0000.0000.0000.0000.3331.0001.0001.0001.0001.0001.0000.3330.8160.3331.0000.0000.0000.0000.0000.8160.8160.5771.0001.0001.0001.000NaN0.0000.577
Country_Kenya1.0000.0000.0000.000NaN0.0000.0001.0000.0000.0000.0000.000NaN0.0000.0000.000NaNNaNNaN0.000NaN0.0001.0000.0000.0000.0000.0000.0000.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0000.0000.0000.0000.000NaNNaN1.000
Country_Libya0.206-1.0000.0000.0001.0000.0000.0000.0001.0000.0000.000NaN0.000NaN0.0000.0000.000NaN0.0001.000NaN0.0000.517NaN0.0000.000NaN0.000NaN0.6320.0000.0000.8660.0000.7740.090-0.7030.649-0.559-0.5441.0001.000-0.866NaNNaNNaN0.206
Country_Mali0.5771.000NaN0.0000.0000.0000.0000.0000.0001.000NaN1.0000.0000.0000.0001.0000.0000.0000.0000.0000.0000.0000.5771.0001.0001.0001.0001.0001.0000.0000.0000.5771.0000.8160.5771.0000.5770.0000.0000.0001.0001.0001.0001.000NaN1.0000.000
Country_Mauritania1.000NaN0.0000.0000.0000.0000.0000.0000.000NaN1.0001.0000.0000.0000.000NaN0.0000.0000.0000.0000.0000.0001.0000.0000.0000.0000.0000.0000.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.000NaN1.000NaN0.000NaN0.000NaN1.000
Country_Morocco0.145NaNNaN0.0000.0000.0001.0000.000NaN1.0001.0001.0000.0000.0000.000NaN0.0000.0000.000NaN0.0000.0000.330NaN0.0000.000NaN0.000NaN0.4240.0000.0000.0000.4300.3760.000-0.3420.216-0.360-0.3510.500-0.4000.700NaNNaN0.5000.036
Country_Mozambique0.7750.0000.0000.000NaN0.0000.000NaN0.0000.0000.0000.0001.0000.0000.000NaN0.0001.0001.0000.0001.000NaN0.866NaNNaNNaNNaN1.000NaN0.2000.0000.0000.0000.0000.0000.5000.0000.2360.0000.000NaN0.000NaN0.0001.0000.0000.430
Country_Niger1.000NaN0.0000.0000.0000.0000.0000.000NaN0.0000.0000.0000.0001.0001.0000.0000.0000.0000.000NaNNaN0.0001.0000.0000.0000.0000.0000.0000.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.000NaNNaN0.000NaN0.0001.000
Country_Nigeria0.000NaN0.0000.000NaN0.0000.0000.0000.0000.0000.0000.0000.0001.0001.0000.0000.000NaN0.000NaN1.0000.0000.0000.0000.0000.0000.0000.0000.0000.8161.0000.0000.5770.0000.0000.0000.0000.8160.0000.0001.0001.0001.0000.000NaN0.0000.000
Country_Senegal1.000NaN0.0000.0000.0000.000NaN0.0000.0001.000NaNNaNNaN0.0000.0001.000NaNNaNNaN0.0000.0000.0001.000NaNNaNNaNNaNNaNNaN1.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0000.0000.0001.0000.000NaN1.000
Country_South Africa1.0000.0000.0000.000NaN0.0000.000NaN0.0000.0000.0000.0000.0000.0000.000NaN1.0001.0000.0000.000NaN0.0001.0000.0000.0000.0000.0000.0000.0000.7070.7070.0000.0001.0000.7070.0001.0001.0001.0000.0000.0000.000NaNNaNNaN1.0001.000
Country_Spain0.000NaNNaNNaNNaNNaN0.000NaNNaN0.0000.0000.0001.0000.000NaNNaN1.0001.000NaN0.000NaN0.0000.000NaN0.000NaNNaN0.000NaN0.8160.0000.0001.0001.0000.5770.0000.0000.0000.5770.5770.000NaN1.000NaN1.0000.0000.000
Country_Tanzania0.0000.0000.000NaN1.0000.0000.000NaN0.0000.0000.0000.0001.0000.0000.000NaN0.000NaN1.0000.0001.000NaN0.0001.000NaN0.000NaN1.000NaN0.3820.1770.0000.3820.0000.7070.0000.0000.0000.0000.612NaN0.000NaNNaN1.0000.8160.000
Country_Tunisia1.000NaN0.0000.0000.0000.0000.0000.0001.0000.0000.000NaN0.000NaNNaN0.0000.0000.0000.0001.0000.0000.0001.000NaN0.0000.000NaN0.000NaN1.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0000.0001.000NaNNaN0.0001.000
Country_United Kingdom0.866NaNNaNNaN1.0000.0000.000NaNNaN0.0000.0000.0001.000NaN1.0000.000NaNNaN1.0000.0001.0000.0000.8660.0000.0000.0000.0000.0000.0001.0000.0000.0000.0000.0000.0000.0000.0000.0000.7070.000NaN1.000NaN1.0000.0000.0001.000
Country_Zambia1.0000.0000.000NaN0.0000.0000.0000.0000.0000.0000.0000.000NaN0.0000.0000.0000.0000.000NaN0.0000.0001.0001.000NaN1.000NaN1.0001.0000.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.0000.0000.0000.000NaN0.0001.0001.000
Departure Age0.643-0.4941.0001.0000.0001.0000.3331.0000.5170.5771.0000.3300.8661.0000.0001.0001.0000.0000.0001.0000.8661.0001.0000.0000.0000.0000.6120.5770.0000.0940.3430.3930.0000.0000.028-0.143-0.0460.212-0.181-0.1370.1220.077-0.045-0.3970.000-0.1910.513
Difficulty_Climate0.0000.0000.000NaN0.000NaN1.0000.000NaN1.0000.000NaNNaN0.0000.000NaN0.000NaN1.000NaN0.000NaN0.0001.0001.0001.0000.0000.0000.0000.6670.0001.0000.5090.0000.4510.0000.4510.0000.0000.0000.0000.0000.0000.0000.0000.0000.000
Difficulty_Fatigue/Illness1.000NaN0.000NaN0.0000.0001.0000.0000.0001.0000.0000.000NaN0.0000.000NaN0.0000.000NaN0.0000.0001.0000.0001.0001.0001.0001.0000.0001.0001.0000.0001.0001.0000.0000.7071.0000.0000.0000.0000.0001.0000.000NaN1.000NaN1.0000.000
Difficulty_Humans1.0001.0000.0000.0000.000NaN1.0000.0000.0001.0000.0000.000NaN0.0000.000NaN0.000NaN0.0000.0000.000NaN0.0001.0001.0001.0001.0001.0000.0001.0001.0001.0001.0001.0000.0001.0000.0000.0000.0000.0001.0000.0001.0000.0001.0001.0001.000
Difficulty_Nature0.8660.0000.000NaN0.000NaN1.0000.000NaN1.0000.000NaNNaN0.0000.000NaN0.000NaNNaNNaN0.0001.0000.6120.0001.0001.0001.0000.0000.0000.6120.6121.0000.8660.0000.2040.8660.0000.6120.0000.3331.0000.0000.0000.0000.0001.0000.565
Difficulty_Thirst/Hunger0.816NaN0.000NaN0.0000.0001.0000.0000.0001.0000.0000.0001.0000.0000.000NaN0.0000.0001.0000.0000.0001.0000.5770.0000.0001.0000.0001.0001.0000.5771.0001.0001.0001.0000.0000.8161.0000.0000.8160.5771.0000.000NaN1.000NaN0.0000.000
Difficulty_Transport0.0000.0000.0000.0000.000NaN1.0000.000NaN1.0000.000NaNNaN0.0000.000NaN0.000NaNNaNNaN0.0000.0000.0000.0001.0000.0000.0001.0001.0000.0000.0001.0000.0000.8160.0000.0000.0000.0000.0000.0001.0000.0000.0000.0000.0001.0000.577
Hierarchical_Cluster0.1850.0001.0001.0001.0001.0000.3331.0000.6320.0001.0000.4240.2001.0000.8161.0000.7070.8160.3821.0001.0001.0000.0940.6671.0001.0000.6120.5770.0001.0000.5880.0000.1200.0000.2430.3880.3180.0980.0000.0000.0000.3190.1860.0000.3980.6600.440
KMeans_Cluster0.4060.5151.0001.0001.0001.0000.8161.0000.0000.0001.0000.0000.0001.0001.0001.0000.7070.0000.1771.0000.0001.0000.3430.0000.0001.0000.6121.0000.0000.5881.0000.0000.1820.4860.5260.0000.5240.2480.3760.4530.0001.0000.0000.3800.0000.6080.467
Language0.0000.4331.0001.0000.7071.0000.3331.0000.0000.5771.0000.0000.0001.0000.0001.0000.0000.0000.0001.0000.0001.0000.3931.0001.0001.0001.0001.0001.0000.0000.0001.0000.0000.4220.0000.2670.0000.0000.5350.2350.3400.0000.0000.0000.3980.0000.000
Money0.0940.2651.0001.0000.0001.0001.0001.0000.8661.0001.0000.0000.0001.0000.5771.0000.0001.0000.3821.0000.0001.0000.0000.5091.0001.0000.8661.0000.0000.1200.1820.0001.0000.0000.0000.1830.0000.0000.0000.0000.6560.0000.0000.0000.1720.5970.470
Nationality0.0000.3161.0001.0001.0001.0000.0001.0000.0000.8161.0000.4300.0001.0000.0001.0001.0001.0000.0001.0000.0001.0000.0000.0000.0001.0000.0001.0000.8160.0000.4860.4220.0001.0000.2650.2020.6700.4070.3530.2970.1320.0000.5000.0000.0000.0000.000
Number of images0.1720.0881.0001.0001.0001.0000.0001.0000.7740.5771.0000.3760.0001.0000.0001.0000.7070.5770.7071.0000.0001.0000.0280.4510.7070.0000.2040.0000.0000.2430.5260.0000.0000.2651.000-0.1020.007-0.294-0.206-0.213-0.139-0.060-0.1240.2080.2890.1220.057
Number of steps-0.0730.4951.0001.0001.0001.0000.0001.0000.0901.0001.0000.0000.5001.0000.0001.0000.0000.0000.0001.0000.0001.000-0.1430.0001.0001.0000.8660.8160.0000.3880.0000.2670.1830.202-0.1021.000-0.0780.4190.1890.1360.2680.092-0.058-0.1650.0000.693-0.029
Start Year0.0770.0061.0001.0000.7071.0000.0001.000-0.7030.5771.000-0.3420.0001.0000.0001.0001.0000.0000.0001.0000.0001.000-0.0460.4510.0000.0000.0001.0000.0000.3180.5240.0000.0000.6700.007-0.0781.000-0.3570.0460.017-0.041-0.0920.236-0.0420.7560.023-0.176
Steps with null coordinates in %-0.028-0.5831.0001.0001.0001.0000.8161.0000.6490.0001.0000.2160.2361.0000.8161.0001.0000.0000.0001.0000.0001.0000.2120.0000.0000.0000.6120.0000.0000.0980.2480.0000.0000.407-0.2940.419-0.3571.000-0.2390.1070.1090.402-0.065-0.6720.0000.5140.024
Total distance traveled (km)0.139-0.3551.0001.0001.0001.0000.8161.000-0.5590.0001.000-0.3600.0001.0000.0001.0001.0000.5770.0001.0000.7071.000-0.1810.0000.0000.0000.0000.8160.0000.0000.3760.5350.0000.353-0.2060.1890.046-0.2391.0000.519-0.159-0.184-0.646-0.5320.0000.0530.173
Transport_Boat-0.133-0.2871.0001.0001.000NaN0.5771.000-0.5440.000NaN-0.3510.0001.0000.0001.0000.0000.5770.6121.0000.0001.000-0.1370.0000.0000.0000.3330.5770.0000.0000.4530.2350.0000.297-0.2130.1360.0170.1070.5191.0000.155-0.135-0.295-0.6250.0000.173-0.038
Transport_Camelid-0.4120.4290.0000.0000.0000.0001.0000.0001.0001.0001.0000.500NaN1.0001.0001.0000.0000.000NaN1.000NaN0.0000.1220.0001.0001.0001.0001.0001.0000.0000.0000.3400.6560.132-0.1390.268-0.0410.109-0.1590.1551.000-0.500-0.400-0.3161.0000.105-0.487
Transport_Caravan-0.162-1.000NaN0.0001.0000.0001.0000.0001.0001.000NaN-0.4000.000NaN1.0000.0000.000NaN0.0000.0001.0000.0000.0770.0000.0000.0000.0000.0000.0000.3191.0000.0000.0000.000-0.0600.092-0.0920.402-0.184-0.135-0.5001.000-0.211NaNNaN1.000-0.031
Transport_Equid-0.2350.564NaN0.0001.0001.0001.0000.000-0.8661.0000.0000.700NaNNaN1.0000.000NaN1.000NaN1.000NaN0.000-0.0450.000NaN1.0000.000NaN0.0000.1860.0000.0000.0000.500-0.124-0.0580.236-0.065-0.646-0.295-0.400-0.2111.000-0.2110.0000.211-0.329
Transport_Slow ground vehicle-0.3970.1890.0000.000NaNNaN1.0000.000NaN1.000NaNNaN0.0000.0000.0001.000NaNNaNNaNNaN1.000NaN-0.3970.0001.0000.0000.0001.0000.0000.0000.3800.0000.0000.0000.208-0.165-0.042-0.672-0.532-0.625-0.316NaN-0.2111.0000.333-0.316-0.326
Transport_Train0.0000.000NaNNaN1.0001.000NaNNaNNaNNaN0.000NaN1.000NaNNaN0.000NaN1.0001.000NaN0.0000.0000.0000.000NaN1.0000.000NaN0.0000.3980.0000.3980.1720.0000.2890.0000.7560.0000.0000.0001.000NaN0.0000.3331.0000.0001.000
Transport_Walking0.133NaNNaNNaN1.0000.0000.000NaNNaN1.000NaN0.5000.0000.0000.000NaN1.0000.0000.8160.0000.0001.000-0.1910.0001.0001.0001.0000.0001.0000.6600.6080.0000.5970.0000.1220.6930.0230.5140.0530.1730.1051.0000.211-0.3160.0001.0000.032
Travel duration in days0.900-0.5351.0001.0001.0001.0000.5771.0000.2060.0001.0000.0360.4301.0000.0001.0001.0000.0000.0001.0001.0001.0000.5130.0000.0001.0000.5650.0000.5770.4400.4670.0000.4700.0000.057-0.029-0.1760.0240.173-0.038-0.487-0.031-0.329-0.3261.0000.0321.000

Missing values

2025-03-20T14:00:30.275353image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
A simple visualization of nullity by column.
2025-03-20T14:00:31.803766image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2025-03-20T14:00:34.130153image/svg+xmlMatplotlib v3.8.4, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.

Sample

TitleYear of the JourneyStart YearAuthorDate of birthPlace of birthDate of deathPlace of deathNationalityActivitiesLanguageURLCitationDeparture dateDeparture AgeArrival dateArrival AgeTravel duration in daysMoneyGoalSuccessNumber of stepsNumber of imagesSteps with null coordinates in %Total distance traveled (km)Transport_TrainTransport_EquidCountry_FranceCountry_AlgeriaTransport_Slow ground vehicleTransport_BoatDifficulty_ClimateDifficulty_TransportDifficulty_NatureCountry_TunisiaCountry_MoroccoCountry_LibyaTransport_CaravanTransport_CamelidCountry_United KingdomCountry_NigeriaCountry_NigerDifficulty_HumansCountry_SpainCountry_GibraltarTransport_WalkingDifficulty_Fatigue/IllnessDifficulty_Thirst/HungerCountry_Sierra LeoneCountry_GuineaCountry_MaliCountry_Côte d'IvoireCountry_SenegalCountry_EgyptCountry_KenyaCountry_TanzaniaCountry_MozambiqueCountry_Democratic Republic of the CongoCountry_ZambiaCountry_BotswanaCountry_South AfricaCountry_ZimbabweCountry_PortugalCountry_Cape VerdeCountry_Saint Helena, Ascension and Tristan da CunhaCountry_IndiaCountry_SomaliaCountry_Guinea-BissauCountry_MalawiCountry_MauritaniaCountry_GhanaCountry_LiberiaCountry_The GambiaCountry_EthiopiaCountry_MaltaCountry_GabonCountry_GermanyCountry_AngolaCountry_NamibiaCountry_Sahrawi Arab Democratic RepublicCountry_SwedenCountry_UkraineCountry_RussiaHierarchical_ClusterKMeans_Cluster
19A Journal of the First Voyage of Vasco da Gama 1497-149914971497Vasco da Gama1469Sines (Portugal)24/12/1524Kochi (India)Portugueseexplorer, aristocratEnglishhttps://www.gutenberg.org/cache/epub/46440/pg46440-images.htmlravenstein2017journal08/07/14972825/04/149929656Discover a sea route to IndiaNot specified242525.0035819.58NaNNaNNaNNaNNaN24.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN1.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3.0NaN3.0NaNNaNNaN3.0NaN1.02.01.02.01.01.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14
18A Popular Account of Dr. Livingstone's Expedition to the Zambesi and Its Tributaries1858-18641858David Livingstone19/03/1813Blantyre (Scotland)1/05/1873Lake Bangweulu (Zambia)Scottishexplorer, writer, geographer, missionaryEnglishhttps://www.gutenberg.org/cache/epub/2519/pg2519-images.htmllivingstone1875popular15/06/18523919/03/1866535025To expand knowledge of East and Central Africa's geography, minerals, and agriculture, improve relations with locals, encourage industrial activities and land cultivation for export to England, and help end the slave trade by providing a more profitable economic alternativeWhile Livingstone and his companions explored vast lands, established relations with local chiefs, and gathered valuable geographical and scientific information, their efforts to foster trade and encourage indigenous industry were hindered by factors such as the ongoing slave trade, tribal rivalries, and natural obstacles like cataracts and drought16043.756332.11NaNNaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.06.0NaNNaNNaN1.01.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13
26A biographical memoir of the late Dr. Walter Oudney, Captain Hugh Clapperton, both of the Royal Navy, and Major Alex. Gordon Laing, all of whom died amid their active and enterprising endeavours to explore the interior of Africa18211821Thomas Nelson (publisher)explorer, traveler, writerEnglishhttps://www.gutenberg.org/cache/epub/72209/pg72209-images.htmlnelson2024biographical27/08/18250Not specified00Exploring interior Africa, particularly tracing the course and trying to determine the source of the Niger RiverOudney died during the expedition before determining the course and source of the Niger River. However, he gathered significant information on Central Africa before his death5120.005664.32NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.02.0NaN1.01.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN23
31Afrikanska reseminnen, Äfventyr och Intryck från En utflykt till de Svartes Världsdel1890-18911890Georg Edvard von Alfthan17/06/1856Helsinki (Finland)23/03/1901Artjärvi (Finland)Finnisharistocrat, military, writerSwedishhttps://www.gutenberg.org/cache/epub/62623/pg62623-images.htmlvon1892afrikanska01/07/18903401/04/189134274The book mentions that he left with little money and had to find ways to earn a living during his journeyThe author mentions traveling to escape personal issues and discover new horizons25048.0022288.003.01.0NaNNaN2.09.0NaNNaNNaNNaNNaNNaNNaNNaN1.0NaNNaNNaNNaNNaN7.0NaNNaNNaNNaNNaNNaNNaN1.0NaN1.03.0NaNNaNNaN4.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN1.01.01.023
33Au Hoggar19221922Conrad Kilian23/08/1898Desaignes (Ardèche, France)29/04/1950Grenoble (France)Frenchgeologist, explorerFrenchhttps://www.gutenberg.org/cache/epub/73291/pg73291-images.htmlkilian1925hoggar08/01/19222308/02/19222331Scientific mission in Central Sahara, focused on geology, botany, and morphologyYes, Kilian successfully completed his scientific mission, reporting numerous geological, botanical, and ethnographic observations and data9044.44641.25NaNNaNNaN5.0NaNNaNNaNNaNNaNNaNNaNNaNNaN9.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN23
0Au Sahara18891889Hugues Le Roux23/11/1860Le Havre (France)14/11/1925ParisFrenchjournalist, politician, writerFrenchhttps://www.gutenberg.org/cache/epub/70754/pg70754-images.htmlle1890sahara08/06/18892814/07/18892836Enough money for a guide, camels, and foodExploring the Sahara and documenting local cultures and customsThe author achieved his goal through detailed descriptions of places, encounters, and reflections95611.112043.194.05.01.07.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN20
4Botanical features of the Algerian Sahara19101910William Austin Cannon23/09/1870Washington Township (Michigan, United States)16/01/1958Not specifiedAmericanbotanistEnglishhttps://www.gutenberg.org/cache/epub/70581/pg70581-images.htmlcannon1913botanicalInformation non disponible0Not specified00Study the physiological traits of plants in southern Algeria and examine the roots of notable native speciesThe author conducted field observations and studies as planned10820.001028.81NaNNaNNaN10.05.0NaNNaNNaNNaNNaNNaNNaNNaN4.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN20
14Exploration de l'Aïr19211921Angus Buchanan1886Kirkwall (Orkney Islands, Scotland)1954Not specifiedScottishexplorer, photographer, filmmakerEnglishhttps://www.gutenberg.org/cache/epub/70323/pg70323-images.htmlbuchanan1921exploration12/01/19203306/08/192034207Large sum withdrawn from Kano bank, mostly silver coins due to higher local valueBuchanan's expedition aimed to link zoological geography between Algeria and Nigeria, focusing on the Aïr Massif in the Sahara, addressing gaps in naturalist researchHe crossed the Aïr region, collecting numerous animal and plant specimens, many new to science, and advanced zoological knowledge of Africa511747.061810.17NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3.024.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN33
20From the Cape to Cairo: The First Traverse of Africa from South to North18981898Ewart Scott Grogan12/12/1874London16/08/1967Cape Town (South Africa)BritishexplorerEnglishhttps://www.gutenberg.org/cache/epub/45396/pg45396-images.htmlgrogan1900capeNon spécifiée - Quelque temps avant Octobre0Not specified00Travel across South Africa from south to northNot specified19447.3710648.581.0NaNNaNNaN1.04.0NaNNaNNaNNaNNaNNaNNaNNaN1.0NaNNaNNaNNaNNaN6.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.0NaNNaNNaNNaN1.0NaNNaNNaNNaNNaNNaN6.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN23
27Het land der Bagas en de Rio-Nuñez18851885Grégoire-Gaspard-Félix Coffinières de Nordeck3/09/1811Castelnaudary (France)7/01/1887ParisFrenchmilitaryDutchhttps://www.gutenberg.org/cache/epub/16117/pg16117-images.htmlde2023het21/04/188573Not specified00The author's goal was to negotiate with local chiefs along the Rio-Nuñez river to have them recognize King Nalou Yoera Towel as their overlord and place the region under French protectorateThe author successfully negotiated with several Baga chiefs and Landoemans, convincing them to recognize King Nalou and the French protectorate. He also played a key role in safely returning Mahmadi, the sister of Prince Nalou Dinah Salifoe, who had sought refuge in Baga to escape a forced marriage14657.14102.54NaNNaNNaNNaNNaN9.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.0NaNNaNNaN6.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN23
TitleYear of the JourneyStart YearAuthorDate of birthPlace of birthDate of deathPlace of deathNationalityActivitiesLanguageURLCitationDeparture dateDeparture AgeArrival dateArrival AgeTravel duration in daysMoneyGoalSuccessNumber of stepsNumber of imagesSteps with null coordinates in %Total distance traveled (km)Transport_TrainTransport_EquidCountry_FranceCountry_AlgeriaTransport_Slow ground vehicleTransport_BoatDifficulty_ClimateDifficulty_TransportDifficulty_NatureCountry_TunisiaCountry_MoroccoCountry_LibyaTransport_CaravanTransport_CamelidCountry_United KingdomCountry_NigeriaCountry_NigerDifficulty_HumansCountry_SpainCountry_GibraltarTransport_WalkingDifficulty_Fatigue/IllnessDifficulty_Thirst/HungerCountry_Sierra LeoneCountry_GuineaCountry_MaliCountry_Côte d'IvoireCountry_SenegalCountry_EgyptCountry_KenyaCountry_TanzaniaCountry_MozambiqueCountry_Democratic Republic of the CongoCountry_ZambiaCountry_BotswanaCountry_South AfricaCountry_ZimbabweCountry_PortugalCountry_Cape VerdeCountry_Saint Helena, Ascension and Tristan da CunhaCountry_IndiaCountry_SomaliaCountry_Guinea-BissauCountry_MalawiCountry_MauritaniaCountry_GhanaCountry_LiberiaCountry_The GambiaCountry_EthiopiaCountry_MaltaCountry_GabonCountry_GermanyCountry_AngolaCountry_NamibiaCountry_Sahrawi Arab Democratic RepublicCountry_SwedenCountry_UkraineCountry_RussiaHierarchical_ClusterKMeans_Cluster
5Through Spain to the Sahara18681868Matilda Betham-Edwards4/03/1836Westerfield (Suffolk, England)4/01/1919Hastings (England)Britishpoet, writerEnglishhttps://www.gutenberg.org/cache/epub/56260/pg56260-images.htmlbetham1868throughInformation non disponible0Not specified00Explore Spain and the Algerian Sahara, especially Velázquez's paintings and Moorish ruinsThe book describes the author's experiences in various places in Spain and the Sahara26370.002766.2410.01.07.09.011.01.05.09.01.0NaNNaNNaNNaNNaNNaNNaNNaN6.09.01.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN40
6Through Timbuctu and across the great Sahara19121912Austin Hubert Wightwick Haywood7/03/1878Ranikhet (India)28/03/1965Peaslake (England)BritishmilitaryEnglishhttps://www.gutenberg.org/cache/epub/70221/pg70221-images.htmlhaywood1913through06/01/19113207/07/191133182Bills of exchange and minimize cash for security reasonsExplore the Niger River from its source to Timbuktu, then cross the Sahara to Algiers, focusing on hunting and local cultureHe reached Algiers, then Tombouctou, his main landmark, and continued north through the Sahara to Biskra, where he took a train to Algiers401620.004795.913.02.0NaN9.01.09.03.09.02.0NaNNaNNaNNaN15.0NaNNaNNaN6.0NaNNaN9.01.02.02.03.018.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN33
22Timbouctou, voyage au Maroc au Sahara et au Soudan, Tome 2 (de 2)18801880Oskar Lenz13/04/1848Leipzig (Germany)1/03/1925Sooß (Austria)Austrianexplorer, mineralogist, ethnologist, geographer, academic, geologist, africanistFrenchhttps://www.gutenberg.org/cache/epub/74286/pg74286-images.htmllenz1886timbouctou04/04/18803122/11/188032232Upon arriving in Timbuktu, he has about 800 francs from the sale of his camels, a small remainder of about 500 francs, and some clothExplore the Sahara and reach the city of TimbuktuYes20735.003862.91NaNNaNNaN1.05.06.0NaNNaNNaNNaN1.0NaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN5.0NaN4.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN23
21Timbouctou, voyage au Maroc, au Sahara et au Soudan, Tome 1 (de 2)18791879Oskar Lenz13/04/1848Leipzig (Germany)1/03/1925Sooß (Austria)Austrianexplorer, mineralogist, ethnologist, geographer, academic, geologist, africanistFrenchhttps://www.gutenberg.org/cache/epub/74285/pg74285-images.htmllenz1886timbouctou13/11/18793103/04/188031142A few thousand francsExplore Morocco and reach TimbuktuNot specified44547.731159.48NaN33.0NaNNaNNaN1.0NaNNaNNaNNaN22.0NaN1.09.0NaNNaNNaNNaNNaN1.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN33
7Travels and discoveries in North and Central Africa18491849Heinrich Barth16/02/1821Hamburg (Germany)25/11/1865BerlinGermanexplorer, philologist, academic, geographer, writer, historian, archaeologistEnglishhttps://www.gutenberg.org/files/73138/73138-h/73138-h.htmbarth1890travels30/12/18492810/12/185130710£200 / significant extortionsExplore North and Central Africa, focusing on Tripoli, the Sahara, Bornu Kingdom, and Lake Chad areas, aiming to build friendly ties with local leaders and observe cultures, languages, and geographyThe author visits many desired places and gathers substantial information, as shown in his detailed writings143421.433547.08NaN3.0NaNNaNNaN1.0NaNNaNNaN3.0NaN4.0NaN7.0NaN1.03.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN23
8Travels in the Great Desert of Sahara, in the Years of 1845 and 184618451845James Richardson2/07/1809London4/03/1851Kukawa (Nigeria)BritishexplorerEnglishhttps://www.gutenberg.org/cache/epub/22094/pg22094-images.htmlrichardson2022travels10/05/184535Not specified00£50, nearly half spent on gifts. He admits the budget was insufficient and a proper trip should have cost at least £100The author's main goal was to study the extent and functioning of the trans-Saharan slave trade, as well as document the life and customs of Saharan tribes, particularly the TuaregsThe author gathers valuable information on the slave trade in the Sahara and interacts with those involved, while also providing detailed descriptions of Tuareg tribes, their customs, and way of life48672.922858.26NaNNaNNaNNaNNaN1.0NaNNaNNaN1.0NaN12.0NaN43.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN33
11Travels through Central Africa to Timbuctoo and across the Great Desert to Morocco performed in the year 1824-1828, in Two Volumes, Vol. I18241824René Caillié19/11/1799Mauzé-sur-le-Mignon (France)17/05/1838La Gripperie-Saint-Symphorien (France)Frenchexplorer, traveler, writerEnglishhttps://www.gutenberg.org/cache/epub/69847/pg69847-images.htmlcaillie1830travels03/08/18242411/03/18282813162000 francs, mostly invested in goods for tradeTo be the first European to reach Tombouctou and return alive, driven by a desire for exploration and discoveryHe reached Timbuktu, spent two weeks there, and returned safely through the Sahara to Morocco54364.812714.89NaNNaNNaNNaN2.06.06.01.08.0NaNNaNNaNNaN1.0NaNNaNNaN4.0NaNNaN40.08.03.0NaN11.03.0NaN5.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN52
9Travels through Central Africa to Timbuctoo and across the Great Desert to Morocco performed in the year 1824-1828, in Two Volumes, Vol. II18241824René Caillié19/11/1799Mauzé-sur-le-Mignon (France)17/05/1838La Gripperie-Saint-Symphorien (France)Frenchexplorer, traveler, writerEnglishhttps://www.gutenberg.org/cache/epub/70011/pg70011-images.htmlcaillie1830travels19/04/18272707/09/182828507He exhausted all his resources for the trip and arrived in Toulon pennilessExplore Central Africa and visit TimbuktuHe reached Timbuktu and returned alive18327.783920.16NaN5.0NaNNaNNaN2.0NaNNaNNaNNaN5.0NaN6.0NaNNaNNaNNaNNaNNaNNaN5.0NaNNaNNaN3.03.02.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN23
10Un été dans le Sahara18531853Eugène Fromentin24/11/1820La Rochelle (France)27/08/1876La Rochelle (France)Frenchpainter, writer, art historianFrenchhttps://www.gutenberg.org/files/37914/37914-h/37914-h.htmfromentin1888ete22/05/185332Not specified00A theft where he loses part of his money, keeping only five francs, and is later reimbursed half of the stolen amount18027.78377.02NaN6.0NaN13.0NaNNaNNaNNaNNaNNaNNaNNaNNaN12.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN23
12Voyage d'un faux musulman à travers l'Afrique18271827René Caillié19/11/1799Mauzé-sur-le-Mignon (France)17/05/1838La Gripperie-Saint-Symphorien (France)Frenchexplorer, traveler, writerFrenchhttps://www.gutenberg.org/cache/epub/65530/pg65530-images.htmlcaillie2023voyage19/04/18272707/09/1828285072000 francsReach Timbuktu via the Senegal-Gambia route to claim the prize offered by the Paris Geographical SocietyYes10330.003770.28NaN1.0NaNNaNNaN2.0NaNNaNNaNNaN2.0NaN3.0NaNNaNNaNNaNNaNNaNNaN4.0NaNNaNNaN3.02.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN23